如圖,在平面直角坐標(biāo)系中,四邊形ABCO是正方形,點(diǎn)C的坐標(biāo)是(4,0).
(1)直接寫出A、B兩點(diǎn)的坐標(biāo):A______,B______;
(2)若E是BC上一點(diǎn)且∠AEB=60°,沿AE折疊正方形ABCO,折疊后點(diǎn)B落在平面內(nèi)點(diǎn)F處,請畫出點(diǎn)F并求出它的坐標(biāo);
(3)若E是直線BC上任意一點(diǎn),問是否存在這樣的點(diǎn)E,使正方形ABCO沿AE折疊后,點(diǎn)B恰好落在x軸上的某一點(diǎn)P處?若存在,請寫出此時點(diǎn)P與點(diǎn)E的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)根據(jù)正方形的性質(zhì)可得點(diǎn)的坐標(biāo).
(2)折疊問題,實(shí)際上就是軸對稱,可知△AEF≌△AEB,由于∠AEB=60°,∠B=90°,∴∠BAE=30°,∠BAF=2∠BAE=60°,∠AFH=60°,AF=AB=4,解直角△AFH,求出FH,F(xiàn)G,可表示點(diǎn)F的坐標(biāo).
(3)根據(jù)軸對稱的性質(zhì)可知存在.
解答:解:(1)A(0,4),B(4,4);

(2)如圖,過點(diǎn)F分別作FG⊥x軸于點(diǎn)G,作FH⊥y軸于點(diǎn)H
∵∠AEF=∠AEB=60°,
∴∠HAF=∠FAE=∠BAE=30°
在Rt△AHF中,HF=AF=×4=2,
AH=AFsin60°=4×=2
即OH=4-2
因此F(2,4-2).

(3)存在.
P(0,0),E(4,0).
點(diǎn)評:本題考查圖形的翻折變換,解題過程中應(yīng)注意折疊是一種對稱變換,它屬于軸對稱,根據(jù)軸對稱的性質(zhì),折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等,通過解直角三角形,求點(diǎn)F的坐標(biāo).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,點(diǎn)P為x軸上的一個動點(diǎn),但是點(diǎn)P不與點(diǎn)0、點(diǎn)A重合.連接CP,D點(diǎn)是線段AB上一點(diǎn),連接PD.
(1)求點(diǎn)B的坐標(biāo);
(2)當(dāng)∠CPD=∠OAB,且
BD
AB
=
5
8
,求這時點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•渝北區(qū)一模)如圖,在平面直角坐標(biāo)xoy中,以坐標(biāo)原點(diǎn)O為圓心,3為半徑畫圓,從此圓內(nèi)(包括邊界)的所有整數(shù)點(diǎn)(橫、縱坐標(biāo)均為整數(shù))中任意選取一個點(diǎn),其橫、縱坐標(biāo)之和為0的概率是
5
29
5
29

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,等腰梯形ABCD的下底在x軸上,且B點(diǎn)坐標(biāo)為(4,0),D點(diǎn)坐標(biāo)為(0,3),則AC長為
5
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)xOy中,已知點(diǎn)A(-5,0),P是反比例函數(shù)y=
k
x
圖象上一點(diǎn),PA=OA,S△PAO=10,則反比例函數(shù)y=
k
x
的解析式為(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)中,四邊形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,動點(diǎn)P從點(diǎn)O出發(fā),在梯形OABC的邊上運(yùn)動,路徑為O→A→B→C,到達(dá)點(diǎn)C時停止.作直線CP.
(1)求梯形OABC的面積;
(2)當(dāng)直線CP把梯形OABC的面積分成相等的兩部分時,求直線CP的解析式;
(3)當(dāng)△OCP是等腰三角形時,請寫出點(diǎn)P的坐標(biāo)(不要求過程,只需寫出結(jié)果).

查看答案和解析>>

同步練習(xí)冊答案