【題目】如圖,在Rt△ABC中,∠ACB=90°,過(guò)點(diǎn)C的直線(xiàn)MN∥AB,D為AB邊上一點(diǎn),過(guò)點(diǎn)D作DE⊥BC,交直線(xiàn)MN于E,垂足為F,連接CD、BE.
(1)求證:CE=AD;
(2)當(dāng)D在AB中點(diǎn)時(shí),四邊形BECD是什么特殊四邊形?說(shuō)明你的理由;
(3)若D為AB中點(diǎn),則當(dāng)∠A的大小滿(mǎn)足什么條件時(shí),四邊形BECD是正方形?請(qǐng)說(shuō)明你的理由.
【答案】
(1)證明:∵DE⊥BC,
∴∠DFB=90°,
∵∠ACB=90°,
∴∠ACB=∠DFB,
∴AC∥DE,
∵M(jìn)N∥AB,即CE∥AD,
∴四邊形ADEC是平行四邊形,
∴CE=AD
(2)解:四邊形BECD是菱形,
理由是:∵D為AB中點(diǎn),
∴AD=BD,
∵CE=AD,
∴BD=CE,
∵BD∥CE,
∴四邊形BECD是平行四邊形,
∵∠ACB=90°,D為AB中點(diǎn),
∴CD=BD,
∴四邊形BECD是菱形
(3)當(dāng)∠A=45°時(shí),四邊形BECD是正方形,理由是:
解:∵∠ACB=90°,∠A=45°,
∴∠ABC=∠A=45°,
∴AC=BC,
∵D為BA中點(diǎn),
∴CD⊥AB,
∴∠CDB=90°,
∵四邊形BECD是菱形,
∴菱形BECD是正方形,
即當(dāng)∠A=45°時(shí),四邊形BECD是正方形.
【解析】(1)由題意得到四邊形ADEC是平行四邊形,即CE=AD;(2)由D為AB中點(diǎn),得到AD=BD,由CE=AD,得到BD=CE,因?yàn)锽D∥CE,得到四邊形BECD是平行四邊形,由∠ACB=90°,D為AB中點(diǎn),得到CD=BD,根據(jù)菱形的定義得到四邊形BECD是菱形;(3)由∠ACB=90°,∠A=45°,得到∠ABC=∠A=45°,AC=BC,因?yàn)镈為BA中點(diǎn),得到CD⊥AB,∠CDB=90°,由四邊形BECD是菱形,根據(jù)正方形的判定方法得到菱形BECD是正方形,得到四邊形BECD是正方形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)P為定角∠AOB的平分線(xiàn)上的一個(gè)定點(diǎn),點(diǎn)M,N分別在射線(xiàn)OA,OB上(都不與點(diǎn)O重合),且∠MPN與∠AOB互補(bǔ).若∠MPN繞著點(diǎn)P轉(zhuǎn)動(dòng),那么以下四個(gè)結(jié)論:①PM=PN恒成立;②MN的長(zhǎng)不變;③OM+ON的值不變;④四邊形PMON的面積不變.其中正確的為_____.(填番號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知一次函數(shù)y=kx+b的圖象經(jīng)過(guò)A(-2,-1),B(1,3)兩點(diǎn),并且交x軸于點(diǎn)C,交y軸于點(diǎn)D.
(1)求該一次函數(shù)的解析式;
(2)求點(diǎn)C和點(diǎn)D的坐標(biāo);
(3)求△AOB的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中(AB≠BC),直線(xiàn)EF經(jīng)過(guò)其對(duì)角線(xiàn)的交點(diǎn)O,且分別交AD,BC于點(diǎn)M,N,交BA,DC的延長(zhǎng)線(xiàn)于點(diǎn)E,F,下列結(jié)論:①AO=BO;②OE=OF;③△EAM≌△FCN;④△EAO≌△DCO.其中一定正確的是()
A. ①② B. ②③
C. ①④ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,光源P在橫桿AB的正上方,AB在燈光下的影子為CD,AB∥CD,AB=2m,CD=6m,點(diǎn)P到CD的距離是2.7m,則點(diǎn)P到AB間的距離是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線(xiàn)PA交⊙O于A、B兩點(diǎn),AE是⊙O的直徑,點(diǎn)C為⊙O上一點(diǎn),且AC平分∠PAE,過(guò)C作CD⊥PA,垂足為D.
(1)求證:CD為⊙O的切線(xiàn);
(2)若DC+DA=6,⊙O的直徑為10,求AB的長(zhǎng)度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O是坐標(biāo)原點(diǎn),點(diǎn)A在y軸的正半軸上,坐標(biāo)為,點(diǎn)B在x軸的負(fù)半軸上,坐標(biāo)為,同時(shí)滿(mǎn)足,連接AB,且AB=10.點(diǎn)D是x軸正半軸上的一個(gè)動(dòng)點(diǎn),點(diǎn)E是線(xiàn)段AB上的一個(gè)動(dòng)點(diǎn),連接DE.
(1)求A、B兩點(diǎn)坐標(biāo);
(2)若,點(diǎn)D的橫坐標(biāo)為x,線(xiàn)段的長(zhǎng)為d,請(qǐng)用含x的式子表示d;
(3)若,AF、DF分別平分∠BAO、∠BDE,相交于點(diǎn)F,求∠F的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一直角三角形紙片,∠C=90°,BC=6,AC=8,現(xiàn)將△ABC按如圖那樣折疊,使點(diǎn)A與點(diǎn)B重合,折痕為DE,則CE的長(zhǎng)為( 。
A. 2 B. C. D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)A,B的坐標(biāo)分別為(-1,0),(3,0),現(xiàn)同時(shí)將點(diǎn)A,B分別向上平移2個(gè)單位長(zhǎng)度,再向右平移1個(gè)單位長(zhǎng)度,得到A,B的對(duì)應(yīng)點(diǎn)C,D,連接AC,BD,CD.
(1)直接寫(xiě)出點(diǎn)C,D的坐標(biāo),求出四邊形ABDC的面積;
(2)在x軸上是否存在一點(diǎn)F,使得三角形DFC的面積是三角形DFB面積的2倍,若存在,請(qǐng)求出點(diǎn)F的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com