【題目】如圖,等腰直角中,,,、的平分線交于點.

1)求證:;

2)若的外角平分線以及的平分線交于點,(1)結(jié)論是否成立?請在圖中補全圖形,寫出結(jié)論,并說明理由.

【答案】1)見解析;(2)不成立,,理由見解析

【解析】

1)根據(jù)三角形的內(nèi)角和定理,得出∠PAB+PBA=45°,∠PCB+PBC=67.5°,即可求出∠APB=135°,∠BPC=112.5°,作輔助線在AB上截取BG=BC,可證出PBC≌△PBGSAS),即可得出∠BPC=BPG=112.5°,PC=PG,BC=BG,再可證出∠APG=APB-BPG=22.5°,得出∠PAG=APG,進而得出AG=PG,即可得出AB=CP+BC
2)(1)中的結(jié)論不成立;延長ABG,使BG=BC,先證得∠ACG=CBP112.5°,∠CAB=PCB=45°,然后根據(jù)ASA證得GAC≌△PCB,即可證得PC=AB+BC

1)證明:在AB上截取BG=BC


∵等腰RtABC中,AC=BC,∠ACB=90°,
∴∠BAC=ABC=45°,
∵∠A、∠B、∠C的平分線交于點P
∴∠PAB=PBA=22.5°,∠ACP=BCP=45°,
∴∠PAB+PBA=45°,∠PCB+PBC=67.5°
∴∠APB=135°,∠BPC=112.5°,
PBCPBG中,

∴△PBC≌△PBGSAS),
∴∠BPC=BPG=112.5°,PC=PGBC=BG,
∴∠APG=APB-BPG=22.5°
∴∠PAG=APG,
AG=PG
AG=PC,
AB=BG+AG=CP+BC,
AB=CP+BC
2)不成立,

如圖2所示,PC=AB+BC;
證明:延長ABG,使BG=BC,


∴∠BCG=BGC,
∵∠CAB=ABC=45°,
∴∠CBG=135°,
∴∠BCG=BGC=22.5°,
∴∠ACG=112,
∵∠A、∠B的外角平分線以及∠C的平分線交于點P,
∴∠PCB=45°,∠PBC=112.5°
∴∠ACG=CBP,∠CAB=PCB=45°
GACPCB中,
,
∴△GAC≌△PCBASA),
AG=CP,
CP=AB+BG=AB+CB,
結(jié)論:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)經(jīng)公司以30/千克的價格收購一批農(nóng)產(chǎn)品進行銷售,為了得到日銷售量p(千克)與銷售價格x(元/千克)之間的關(guān)系,經(jīng)過市場調(diào)查獲得部分?jǐn)?shù)據(jù)如下表:

銷售價格x(元/千克)

30

35

40

45

50

日銷售量p(千克)

600

450

300

150

0

(1)請你根據(jù)表中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定px之間的函數(shù)表達式;

(2)農(nóng)經(jīng)公司應(yīng)該如何確定這批農(nóng)產(chǎn)品的銷售價格,才能使日銷售利潤最大?

(3)若農(nóng)經(jīng)公司每銷售1千克這種農(nóng)產(chǎn)品需支出a元(a>0)的相關(guān)費用,當(dāng)40≤x≤45時,農(nóng)經(jīng)公司的日獲利的最大值為2430元,求a的值.(日獲利=日銷售利潤﹣日支出費用)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ABC中,∠C90°,以A為圓心,任意長為半徑畫弧,分別交AC,AB于點M,N,再分別以MN為圓心,大于MN長為半徑畫弧,兩弧交于點O,作射線AO,交BC于點E.已知CE3BE5,則AC的長為( 。

A.8B.7C.6D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知⊙O的半徑為1,AC是⊙O的直徑,過點C作⊙O的切線BC,EBC的中點,AB交⊙OD點.

(1)直接寫出EDEC的數(shù)量關(guān)系:_________;

(2)DE是⊙O的切線嗎?若是,給出證明;若不是,說明理由;

(3)填空:當(dāng)BC=_______時,四邊形AOED是平行四邊形,同時以點O、D、E、C為頂點的四邊形是_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=k1x+b與反比例函數(shù)y=的圖象交于第一象限內(nèi)的P(,8),Q(4,m)兩點,與x軸交于A點.

(1)分別求出這兩個函數(shù)的表達式;

(2)直接寫出不等式k1x+b的解集;

(3)M為線段PQ上一點,且MNx軸于N,求△MON的面積最大值及對應(yīng)的M點坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示:拋物線交坐標(biāo)軸于、三點,是拋物線的頂點,在對稱軸上,在坐標(biāo)軸上.以下結(jié)論:

①存在點,使是等腰直角三角形;②的最小值是;的最大值是④若相似,則的坐標(biāo)恰有兩個.

其中正確的是________(只填序號)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,線段AB和射線BM交于點B

1)利用尺規(guī)完成以下作圖,并保留作圖痕跡(不寫作法)

①在射線BM上作一點C,使AC=AB;

②作∠ABM 的角平分線交ACD點;

③在射線CM上作一點E,使CE=CD,連接DE.

2)在(1)所作的圖形中,猜想線段BDDE的數(shù)量關(guān)系,并證明之.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖 1,在△ ABC中,∠ACB = 2∠B, ∠BAC的平分線AOBC于點D,HAO上一動點,過點H作直線l⊥ AOH,分別交直線AB、AC、BC于點NE、M

1)當(dāng)直線l經(jīng)過點C(如圖 2),求證:NH = CH;

2)當(dāng)MBC中點時,寫出CECD之間的等量關(guān)系,并加以證明;

3)請直接寫出BNCE、CD之間的等量關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形網(wǎng)格中,每個小正方形的邊長都為1,網(wǎng)格中有一個格點ABC(即三角形的頂點都在格點上).

1ABC的面積為__________;

2)在圖中作出ABC關(guān)于直線MN的對稱圖形A′B′C′.

3)利用網(wǎng)格紙,在MN上找一點P,使得PB+PC的距離最短.( 保留痕跡)

查看答案和解析>>

同步練習(xí)冊答案