【題目】如圖,為直線上一點(diǎn),,是的平分線,,
(1)求的度數(shù)
(2)試判斷是否平分,并說明理由
【答案】(1)145°;(2)詳見解析
【解析】
(1)根據(jù)角的平分線的定義求得∠AOD的度數(shù),然后根據(jù)鄰補(bǔ)角的定義求得∠BOD的度數(shù);
(2)首先根據(jù)∠DOE=90°,即∠COD+∠COE=90°,即可求得∠COE的度數(shù),然后根據(jù)∠BOE=180°-∠AOD-∠DOE,求得∠BOE的度數(shù),從而判斷.
(1)是的角平分線(已知),,
,
,
;
(2)答:OE平分∠BOC.
理由:
∵∠COE+∠COD=∠DOE =90,
∴∠COE=∠DOE-∠COD=90-35=55.
∵∠AOD+∠DOE+∠BOE=180
∴,
∴∠COE=∠BOE=55,
∴OE平分∠BOC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖(1)四邊形ABCD中,已知∠ABC+∠ADC=180°,AB=AD,DA⊥AB,點(diǎn)E在CD的延長(zhǎng)線上,∠BAC=∠DAE.
(1)求證:△ABC≌△ADE;
(2)求證:CA平分∠BCD;
(3)如圖(2),設(shè)AF是△ABC的BC邊上的高,求證:EC=2AF.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2014年3月,某海域發(fā)生航班失聯(lián)事件,我海事救援部門用高頻海洋探測(cè)儀進(jìn)行海上搜救,分別在A、B兩個(gè)探測(cè)點(diǎn)探測(cè)到C處是信號(hào)發(fā)射點(diǎn),已知A、B兩點(diǎn)相距400m,探測(cè)線與海平面的夾角分別是和,若CD的長(zhǎng)是點(diǎn)C到海平面的最短距離.
問BD與AB有什么數(shù)量關(guān)系,試說明理由;
求信號(hào)發(fā)射點(diǎn)的深度結(jié)果精確到1m,參考數(shù)據(jù):,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】以線段a=16,b=13,c=10,d=6為邊作梯形,其中a、c作為梯形的兩底,這樣的梯形能作( ).
A.1個(gè)B.2個(gè)C.3個(gè)D.0個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】操作:將一把三角尺放在邊長(zhǎng)為1的正方形ABCD上,并使它的直角頂點(diǎn)P在對(duì)角線AC上滑動(dòng),直角的一邊始終經(jīng)過點(diǎn)B,另一邊與射線DC相交于點(diǎn)Q,設(shè)A、P兩點(diǎn)間的距離為x.
探究:
(1)當(dāng)點(diǎn)Q在邊CD上時(shí),線段PQ與線段PB之間有怎樣的大小關(guān)系?試證明你觀察到的結(jié)論;
(2)當(dāng)點(diǎn)Q在邊CD上時(shí),設(shè)四邊形PBCQ的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出x的取值范圍;(3)當(dāng)點(diǎn)P在線段AC上滑動(dòng)時(shí),△PCQ是否能成為等腰三角形?如果可能,指出所有能使△PCQ成為等腰三角形的點(diǎn)Q的位置,并求出相應(yīng)x的值;如果不可能,試說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y1=ax2+bx+c與直線y2=mx+n的圖象如圖所示,下列判斷中:①abc<0;②a﹣b+c>0;③5a﹣c=0;④當(dāng)x<或x>6時(shí),y1>y2,其中正確的序號(hào)是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=3,AC=4,BC=5,P為邊BC上一動(dòng)點(diǎn),PE⊥AB于E,PF⊥AC于F,則EF的最小值為( )
A. 2B. 2.2C. 2.4D. 2.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC與△DEF都是等腰三角形,且AB=AC=3,DE=DF=2,若∠B+∠E=90°,則△ABC與△DEF的面積比為( )
A、9:4 B、3:2 C、: D、3:2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲騎電動(dòng)車、乙騎摩托車都從M地出發(fā),沿一條筆直的公路勻速前往N地,甲先出發(fā)一段時(shí)間后乙再出發(fā),甲、乙兩人到達(dá)N地后均停止騎行.已知M、N兩地相距km,設(shè)甲行駛的時(shí)間為x(h),甲、乙兩人之間的距離為y(km),表示y與x函數(shù)關(guān)系的部分圖象如圖所示.請(qǐng)你解決以下問題:
(1)求線段BC所在直線的函數(shù)表達(dá)式;
(2)求點(diǎn)A的坐標(biāo),并說明點(diǎn)A的實(shí)際意義;
(3)根據(jù)題目信息補(bǔ)全函數(shù)圖象.(須標(biāo)明相關(guān)數(shù)據(jù))
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com