【題目】如圖,在ABCD中,點E在邊AD上,以BE為折痕,將△ABE向上翻折,點A正好落在CD上的點F處,若△FDE的周長為8,FCB的周長為22,則ABCD的周長為________FC的長為________

【答案】 30 7

【解析】試題解析:由折疊的性質(zhì)可得EF=AE、BF=BA

ABCD的周長=DF+FC+CB+BA+AE+DE=FDE的周長+FCB的周長=30,

設(shè)DF=x,FC=y

ABCD,

AD=BC,CD=AB

BE為折痕,

AE=EF,AB=BF

∵△FDE的周長為8,FCB的周長為22,

BC=AD=8x,AB=CD=x+y

y+x+y+8x=22,

解得y=7.

故答案為:30,7.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某停車場收費標準分為中型汽車和小型汽車兩種,某兩天這個停車場的收費情況如下表:

中型汽車數(shù)量

小型汽車數(shù)量

收取費用

第一天

15輛

35輛

360元

第二天

18輛

20輛

300元

(1)中型汽車和小型汽車的停車費每輛多少元?

(2)某天停車場共停車70輛,若收取的停車費用高于500元,則中型汽車至少有多少輛?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將兩條寬度都為3的紙條重疊在一起使ABC=60°,則四邊形ABCD的面積為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,甲、乙兩艘輪船同時從港口O出發(fā),甲輪船以20海里/時的速度向南偏東45°方向航行,乙輪船向南偏西45°方向航行.已知它們離開港口O兩小時后,兩艘輪船相距50海里,求乙輪船平均每小時航行多少海里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,AB=CD,對角線AC,BD相交于點O,AEBD于點E,CFBD于點F,連接AF,CE,若DE=BF,則下列結(jié)論:CF=AE;OE=OF;四邊形ABCD是平行四邊形;圖中共有四對全等三角形.其中正確結(jié)論的個數(shù)是( 。

A.4 B.3 C.2 D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABCD,BMN與∠DNM的平分線相交于點G

1)完成下面的證明:

MG平分∠BMN  

∴∠GMN=BMN  

同理∠GNM=DNM

ABCD  ,

∴∠BMN+DNM=  

∴∠GMN+GNM=  

∵∠GMN+GNM+G=  

∴∠G=  

MGNG的位置關(guān)系是  

2)把上面的題設(shè)和結(jié)論,用文字語言概括為一個命題:  

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,拋物線y=ax2+bx+c與x軸相交于A、B兩點,與y軸相交于點C(0,3).且點A的坐標為(﹣1,0),點B的坐標為(3,0),點P是拋物線上第一象限內(nèi)的一個點.

(1)求拋物線的函數(shù)表達式;
(2)連PO、PB,如果把△POB沿OB翻轉(zhuǎn),所得四邊形POP′B恰為菱形,那么在拋物線的對稱軸上是否存在點Q,使△QAB與△POB相似?若存在求出點Q的坐標;若不存在,說明理由;
(3)若(2)中點Q存在,指出△QAB與△POB是否位似?若位似,請直接寫出其位似中心的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為4的正方形ABCD中,點G是BC邊上的任意一點(不同于端點B、C),連接AG,過B、D兩點作BE⊥AG,DF⊥AG,垂足分為E、F.

(1)求證:△ABE≌△DAF;

(2)若ADF的面積為1,試求|BE﹣DF|的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=4,過對角線BD中點O的直線分別交AB,CD邊于點E,F(xiàn).

(1)求證:四邊形BEDF是平行四邊形;

(2)當四邊形BEDF是菱形時,求EF的長.

查看答案和解析>>

同步練習(xí)冊答案