【題目】某商店購(gòu)買60件A商品和30件B商品共用了1080元,購(gòu)買50件A商品和20件B商品共用了880元.
(1) A商品的單價(jià)是___________元,B商品的單價(jià)是___________元;
(2) 已知該商店購(gòu)買B商品的件數(shù)比購(gòu)買A商品的件數(shù)的2倍少4件,設(shè)購(gòu)買A商品的件數(shù)為x件,該商店購(gòu)買的A、B兩種商品的總費(fèi)用為y元.
① 求y與x的函數(shù)關(guān)系式.
② 如果需要購(gòu)買A、B兩種商品的總件數(shù)不少于32件,且該商店購(gòu)買的A、B兩種商品的總費(fèi)用不超過296元,求購(gòu)買B商品最多有多少件?
【答案】(1)16,4(2)①y=24x-16②購(gòu)買B商品最多有22件
【解析】(1)根據(jù)題意可以列出相應(yīng)的二元一次方程組,從而可以解答本題;
(2)①根據(jù)題意可以得到y與x的函數(shù)關(guān)系式;
②根據(jù)題意可以列出相應(yīng)的不等式組,從而可以解答本題.
(1)A商品的單價(jià)是x元,B商品的單價(jià)是y元,根據(jù)題意得:
,
解得:
即A商品的單價(jià)是16元,B商品的單價(jià)是4元.
故答案為:16,4;
(2)①由題意可得:
y=16x+4(2x﹣4)=24x﹣16,即y與x的函數(shù)關(guān)系式是y=24x﹣16;
②由題意可得:
,
解得:12≤x≤13,∴20≤2x﹣4≤22,∴購(gòu)買B商品最多有22件.
答:購(gòu)買B商品最多有22件.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知一次函數(shù)y1=(m﹣2)x+2與正比例函數(shù)y2=2x圖象相交于點(diǎn)A(2,n),一次函數(shù)y1=(m﹣2)x+2與x軸交于點(diǎn)B.
(1)求m、n的值;
(2)求△ABO的面積;
(3)觀察圖象,直接寫出當(dāng)x滿足 時(shí),y1>y2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】長(zhǎng)春市市政工程中需要鋪設(shè)一條長(zhǎng)660米的管道,為了盡量減少施工對(duì)城市交通造成的影響,實(shí)際施工時(shí),每天鋪設(shè)管道的長(zhǎng)度比原計(jì)劃增加10%,結(jié)果提前6天完成,求實(shí)際每天鋪設(shè)管道的長(zhǎng)度與實(shí)際施工天數(shù).某同學(xué)根據(jù)題意列出方程,則方程中未知數(shù)x所表示的量是( )
A. 原計(jì)劃每天鋪設(shè)管道的長(zhǎng)度 B. 實(shí)際每天鋪設(shè)管道的長(zhǎng)度
C. 原計(jì)劃施工的天數(shù) D. 實(shí)際施工的天數(shù)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形ABCD的周長(zhǎng)為44cm,E是AD上的一點(diǎn),F是AB上的一點(diǎn),EF⊥EC,且EF=EC.
(1)若AF=6cm,求FC的長(zhǎng).
(2)連接BE,求證:BE平分∠ABC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,把一個(gè)長(zhǎng)方形紙條ABCD沿AF折疊,點(diǎn)B落在點(diǎn)E處.已知∠ADB=24°,AE∥BD,則∠AFE的度數(shù)是__________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知矩形EFPQ的一邊QP在BC邊上,E、F兩點(diǎn)分別在AB、AC上,AD是BC邊上的高,AD交EF于H.
(1)求證: ;
(2)若BC=10,高AD=8,設(shè)EF=x,矩形EFPQ的面積為y,求y與x的函數(shù)關(guān)系式,并求y的最大值;
(3)若BC=a,高AD=b,直接寫出矩形EFPQ的面積的最大值___________.(用a,b表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知點(diǎn)E、F在直線AB上,點(diǎn)G在線段CD上,ED與FG交于點(diǎn)H,∠C=∠EFG,∠CED=∠GHD.
(1)求證:CE∥GF;
(2)試判斷∠AED與∠D之間的數(shù)量關(guān)系,并說明理由;
(3)若∠EHF=80°,∠D=30°,求∠AEM的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下面三行數(shù),
①2,-4,8,-16,32,-64……
②3,-3,9,-15,33,-63……
③-1,2,-4,8,-16,32……
取每一行的第個(gè)數(shù),依次記為,如上圖中,當(dāng)時(shí),,,已知這三個(gè)數(shù)中最大的數(shù)與最小的數(shù)的差為769,則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知O是四邊形ABCD內(nèi)一點(diǎn),OA=OB=OC,∠ABC=∠ADC=70°,則∠DAO+∠DCO的大小是________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com