已知拋物線y=x2+bx+c交y軸于點(diǎn)A,點(diǎn)A關(guān)于拋物線對稱軸的對稱點(diǎn)為B(3,-4),直線y=x與拋物線在第一象限的交點(diǎn)為C,連接OB.
(1)填空:b=______,c=______;
(2)如圖(1),點(diǎn)P為射線OC上的動點(diǎn),連接BP,設(shè)點(diǎn)P的橫坐標(biāo)為x,△OBP的面積為S,求S關(guān)于x的函數(shù)關(guān)系式;
(3)如圖(2),點(diǎn)P在直線OC上的運(yùn)動,點(diǎn)Q在拋物線上運(yùn)動,問是否存在P、Q,使得以O(shè),B,P,Q為頂點(diǎn)的四邊形為平行四邊形?若存在,請直接寫出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

【答案】分析:(1)根據(jù)B點(diǎn)坐標(biāo)及拋物線的對稱性,可求A點(diǎn)坐標(biāo),將A、B兩點(diǎn)坐標(biāo)代入拋物線解析式,解方程組可求b、c;
(2)連接AB,作PD⊥y軸,則D(0,x),在梯形ABPD中,分別計(jì)算梯形、兩個直角三角形的面積,利用割補(bǔ)法表示△OBP的面積S;
(3)因?yàn)锳B=3,根據(jù)PQ∥AB,PQ=AB,求出滿足條件的P點(diǎn)坐標(biāo).
解答:解:(1)已知B(3,-4),根據(jù)拋物線的對稱性可知A(0,-4),
將A、B兩點(diǎn)坐標(biāo)代入拋物線解析式,得
,解得b=-3,c=-4;

(2)作PD⊥y軸,則D(0,x)
梯形ABPD面積=(x+3)(x+4)=+x+6
△AOB面積=×3×4=6
△DOP面積=×x×x=
∴S=梯形ABPD面積-△AOB面積-△DOP面積=x

(3)存在.設(shè)P(4y,y),Q(x,x2-3x-4),
則OB=PQ,OQ=BP,
∵B(3,-4),
∴OB=5,
∴PB2=(4y-3)2+(y+4)2=x2+(x2-3x-4)2,①
OB2=(4y-x)2+(x2-3x-4-y)2=25,②
①②聯(lián)立得,,,
故P1(8,2),P2),P3(-,-),P4).
點(diǎn)評:本題考查了待定系數(shù)法求拋物線解析式的方法,坐標(biāo)系中,面積的表示方法及平行四邊形性質(zhì)的運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2-8x+c的頂點(diǎn)在x軸上,則c等于( 。
A、4B、8C、-4D、16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知拋物線y=x2+(1-2a)x+a2(a≠0)與x軸交于兩點(diǎn)A(x1,0)、B(x2,0)(x1≠x2).
(1)求a的取值范圍,并證明A、B兩點(diǎn)都在原點(diǎn)O的左側(cè);
(2)若拋物線與y軸交于點(diǎn)C,且OA+OB=OC-2,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=-x2+bx+c與x軸負(fù)半軸交于點(diǎn)A,與y軸正半軸交于點(diǎn)B,且OA=OB.
精英家教網(wǎng)(1)求b+c的值;
(2)若點(diǎn)C在拋物線上,且四邊形OABC是平行四邊形,試求拋物線的解析式;
(3)在(2)的條件下,作∠OBC的角平分線,與拋物線交于點(diǎn)P,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•虹口區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,已知拋物線y=x2+bx+c經(jīng)過A(0,3),B(1,0)兩點(diǎn),頂點(diǎn)為M.
(1)求b、c的值;
(2)將△OAB繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°后,點(diǎn)A落到點(diǎn)C的位置,該拋物線沿y軸上下平移后經(jīng)過點(diǎn)C,求平移后所得拋物線的表達(dá)式;
(3)設(shè)(2)中平移后所得的拋物線與y軸的交點(diǎn)為A1,頂點(diǎn)為M1,若點(diǎn)P在平移后的拋物線上,且滿足△PMM1的面積是△PAA1面積的3倍,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•黔南州)已知拋物線y=x2-x-1與x軸的交點(diǎn)為(m,0),則代數(shù)式m2-m+2011的值為( 。

查看答案和解析>>

同步練習(xí)冊答案