如圖1,△ABC是等腰直角三角形,四邊形ADEF是正方形,D、F分別在AB、AC邊上,此時(shí)BD=CF,BD⊥CF成立.
(1)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)θ()時(shí),如圖2,BD=CF成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說(shuō)明理由.
(2)當(dāng)正方形ADEF繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)45°時(shí),如圖3,延長(zhǎng)BD交CF于點(diǎn)G.
① 求證:BD⊥CF;
② 當(dāng)AB=4,AD=時(shí),求線段BG的長(zhǎng).
圖1 圖2 圖3
解(1)BD=CF成立.
理由:∵△ABC是等腰直角三角形,四邊形ADEF是正方形,
∴AB=AC,AD=AF,∠BAC=∠DAF=90°,
∵∠BAD=,∠CAF=,
∴∠BAD=∠CAF,∴△BAD≌△CAF.
∴BD=CF.
(2)①證明:設(shè)BG交AC于點(diǎn)M.
∵△BAD≌△CAF(已證),∴∠ABM=∠GCM.
∵∠BMA =∠CMG ,∴△BMA ∽△CMG.
∴∠BGC=∠BAC =90°.∴BD⊥CF.
)
②過(guò)點(diǎn)F作FN⊥AC于點(diǎn)N.
∵在正方形ADEF中,AD=,
∴AN=FN=.
∵在等腰直角△ABC 中,AB=4,
∴CN=AC-AN=3,BC=.
Rt△FCN∽Rt△ABM,∴
∴AM=.
∴CM=AC-AM=4-=, .
∵△BMA ∽△CMG,∴.
∴. ∴CG=.
∴在Rt△BGC中,.)
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
1 |
2 |
1 |
2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com