【題目】如圖,在四邊形ABCD中,,,,,,動(dòng)點(diǎn)M從點(diǎn)B出發(fā)沿線段BC以每秒2個(gè)單位長(zhǎng)度的速度向終點(diǎn)C運(yùn)動(dòng),動(dòng)點(diǎn)N同時(shí)從點(diǎn)C出發(fā)沿線段CD以每秒1個(gè)單位長(zhǎng)度的速度向終點(diǎn)D運(yùn)動(dòng).
設(shè)運(yùn)動(dòng)的時(shí)間為t秒.
求BC的長(zhǎng).
當(dāng)時(shí),求t的值.
設(shè)的面積為,試確定與t的函數(shù)關(guān)系式.
在運(yùn)動(dòng)過程中,是否存在某一時(shí)刻t,使::65?若存在,求出t的值;若不存在,請(qǐng)說明理由.
【答案】(1)10; (2); (3); (4)存在這樣的t,其值為2或;理由見解析.
【解析】
(1)如圖①,過A、D分別作于K,于H,然后分別求出BK,KH,CH的長(zhǎng)即可;
(2)如圖②,過D作交BC于G點(diǎn),則四邊形ADGB是平行四邊形,可得GC=7,,,再證明∽,根據(jù)相似三角形對(duì)應(yīng)邊成比例列出關(guān)于t的方程求解即可;
(3)如圖③,過N作BC于點(diǎn)G,過D作DF⊥BC與點(diǎn)F,則∽,根據(jù)相似三角形對(duì)應(yīng)邊成比例可得到,再利用三角形面積公式即可得解;
(4)首先求出四邊形ABCD的面積,即可得到△MNC的面積,再代入(3)中的函數(shù)關(guān)系式求解即可.
如圖①,過A、D分別作于K,于H,則四邊形ADHK是矩形,
,
在中,
,
,
在中,由勾股定理得,.
;
如圖②,過D作交BC于G點(diǎn),則四邊形ADGB是平行四邊形,
,
,
,
,
由題意知,當(dāng)M、N運(yùn)動(dòng)到t秒時(shí),,,
,
(兩直線平行,同位角相等),
又,
∽,
,即,
解得:;
如圖③,
又題意可知,,
過N作BC于點(diǎn)G,過D作DF⊥BC與點(diǎn)F,
∽,
,即,
,
;
存在這樣的t,其值為2或3;
理由如下:,
∵::65,
,
代入(3)中得,
解得:t=2或t=3.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB=12,AC⊥AB,BD⊥AB,AC=BD=8。點(diǎn)P在線段AB上以每秒2個(gè)單位的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由B點(diǎn)向點(diǎn)D運(yùn)動(dòng)。它們的運(yùn)動(dòng)時(shí)間為t(s).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí),△ACP與△BPQ是否全等,請(qǐng)說明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;
(2)如圖2,將圖1中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變。設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為每秒x個(gè)單位,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x,t的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在線教育使學(xué)生足不出戶也能連接全球優(yōu)秀的教育資源下面的統(tǒng)計(jì)圖反映了我國(guó)在線教育用戶規(guī)模的變化情況.根據(jù)統(tǒng)計(jì)圖提供的信息,給出下列判斷:①2015年12月~2017年6月,我國(guó)在線教育用戶規(guī)模逐漸上升;②2015年12月~2017年6月,我國(guó)手機(jī)在線教育課程用戶規(guī)模占在線教育用戶規(guī)模的比例持續(xù)上升;③2017年6月,我國(guó)手機(jī)在線教育課程用戶規(guī)模超過在線教育用戶規(guī)模的70%.其中正確的是( )
A.①②③B.①②C.②③D.①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD中,點(diǎn)E,F分別在邊,AD,CD上,且,BD和EF交于點(diǎn)O,延長(zhǎng)BD至點(diǎn)H,使得,并連接HE,HF.
求證:;
試判斷四邊形BEHF是什么特殊的四邊形,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC 中,點(diǎn) D、E 分別在 BC、AC 上且 BD=CE,AD=DE, ∠C =∠ADE, 則∠B =∠C,試填寫說理過程.
解因?yàn)椤?/span>EDB =∠C+∠DEC( )
即∠ADB+∠ADE =∠C+∠DEC
因?yàn)椤?/span>C =∠ADE( )
所以∠ =∠ (等式性質(zhì))
在△ABD 與△DCE 中,
所以△ABD ≌ △DCE( )
所以∠B =∠C( )
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店購進(jìn)、兩種商品,購買1個(gè)商品比購買1個(gè)商品多花10元,并且花費(fèi)300元購買商品和花費(fèi)100元購買商品的數(shù)量相等.
(1)求購買一個(gè)商品和一個(gè)商品各需要多少元;
(2)商店準(zhǔn)備購買、兩種商品共80個(gè),若商品的數(shù)量不少于商品數(shù)量的4倍,并且購買、商品的總費(fèi)用不低于1000元且不高于1050元,那么商店有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】三臺(tái)縣某中學(xué)“五四”青年節(jié)舉行了“班班有歌聲”歌詠比賽活動(dòng)比賽聘請(qǐng)了10位教師和10位學(xué)生擔(dān)任評(píng)委,其中甲班的得分情況如統(tǒng)計(jì)表和統(tǒng)計(jì)圖.
老師評(píng)委評(píng)分統(tǒng)計(jì)表:
評(píng)委序號(hào) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
分?jǐn)?shù) | 94 | 96 | 93 | 91 | x | 92 | 91 | 98 | 96 | 93 |
學(xué)生評(píng)委評(píng)分折線統(tǒng)計(jì)圖師生評(píng)委評(píng)分頻數(shù)分布直方圖
補(bǔ)全頻數(shù)分布直方圖.
學(xué)生評(píng)委評(píng)分的中位數(shù)是______.
計(jì)分辦法規(guī)定:老師評(píng)委、學(xué)生評(píng)委的評(píng)分各去掉一個(gè)最高分、一個(gè)最低分,并且按教師、學(xué)生各占、的方法計(jì)算各班最后得分,知甲班最后得分分,試求統(tǒng)計(jì)表中的x.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,∠CAB=30°.以AB長(zhǎng)為一邊作△ABD,且AD=BD,∠ADB=90°,取AB中點(diǎn)E,連DE、CE、CD.則∠EDC是多少度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,AB=12,AC⊥AB,BD⊥AB,AC=BD=8。點(diǎn)P在線段AB上以每秒2個(gè)單位的速度由點(diǎn)A向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段BD上由B點(diǎn)向點(diǎn)D運(yùn)動(dòng)。它們的運(yùn)動(dòng)時(shí)間為t(s).
(1)若點(diǎn)Q的運(yùn)動(dòng)速度與點(diǎn)P的運(yùn)動(dòng)速度相等,當(dāng)t=2時(shí),△ACP與△BPQ是否全等,請(qǐng)說明理由,并判斷此時(shí)線段PC和線段PQ的位置關(guān)系;
(2)如圖2,將圖1中的“AC⊥AB,BD⊥AB”改為“∠CAB=∠DBA=60°”,其他條件不變。設(shè)點(diǎn)Q的運(yùn)動(dòng)速度為每秒x個(gè)單位,是否存在實(shí)數(shù)x,使得△ACP與△BPQ全等?若存在,求出相應(yīng)的x,t的值;若不存在,請(qǐng)說明理由。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com