某興趣小組在學(xué)習(xí)了勾股定理之后提出:“銳(鈍)角三角形有沒(méi)有類(lèi)似于勾股定理的結(jié)論”的問(wèn)題.首先定義了一個(gè)新的概念:如圖(1)△ABC中,M是BC的中點(diǎn),P是射線(xiàn)MA上的點(diǎn),設(shè)數(shù)學(xué)公式=k,若∠BPC=90°,則稱(chēng)k為勾股比.

(1)如圖(1),過(guò)B、C分別作中線(xiàn)AM的垂線(xiàn),垂足為E、D.求證:CD=BE.
(2)①如圖(2),當(dāng)=1,且AB=AC時(shí),AB2+AC2=______BC2(填一個(gè)恰當(dāng)?shù)臄?shù)).
②如圖(1),當(dāng)k=1,△ABC為銳角三角形,且AB≠AC時(shí),①中的結(jié)論還成立嗎?若成立,請(qǐng)寫(xiě)出證明過(guò)程;若不成立,也請(qǐng)說(shuō)明理由;
③對(duì)任意銳角或鈍角三角形,如圖(1)、(3),請(qǐng)用含勾股比k的表達(dá)式直接表示AB2+AC2與BC2的關(guān)系(寫(xiě)出銳角或鈍角三角形中的一個(gè)即可).

(1)證明:∵M(jìn)是BC的中點(diǎn),
∴BM=CM,
∵BE⊥AM于E,CD⊥AM于D,
∴∠E=∠CDM=90°,
在△BME和△CMD中,
,
∴△BME≌△CMD(AAS),
∴CD=BE;

(2)①AB2+AC2=2.5BC2
②結(jié)論仍然成立.
理由如下:∵AM是△ABC的中線(xiàn),
∴PM=BM=CM=BC,
∵k=1,
∴AP=PM,
∴AM=2PM=BC,
在Rt△ABM中,AB2=AM2+BM2=BC2+BC2=BC2,
在Rt△ACM中,AC2=AM2+CM2=BC2+BC2=BC2
∴AB2+AC2=BC2+BC2=2.5BC2;
即AB2+AC2=2.5BC2

③結(jié)論:銳角三角形:AB2+AC2=BC2,
鈍角三角形:AB2+AC2=BC2
理由如下:設(shè)EM=DM=a,則AE=AM+a,AD=AM-a,
在Rt△ABE中,AB2=AE2+BE2=(AM+a)2+BE2=AM2+2AM•a+a2+BE2,
在Rt△ACD中,AC2=AD2+CD2=(AM-a)2+CD2=AM2-2AM•a+a2+CD2,
∴AB2+AC2=2AM2+(a2+BE2)+(a2+CD2),
∵BE⊥AM于E,CD⊥AM于D,
∴∠E=∠CDM=90°,
∴a2+BE2=BM2=BC2,a2+CD2=CM2=BC2,
∴AB2+AC2=2AM2+BC2,
=k,
∴AP=kPM,
∵∠BPC=90°,AM是△ABC的中線(xiàn),
∴PM=BC,
若△ABC是銳角三角形,則AM=AP+PM=kPM+PM=(k+1)PM=BC,
∴AB2+AC2=2×(BC)2+BC2=BC2,
即AB2+AC2=BC2;
若△ABC是鈍角三角形,則AM=PM+AP=PM-kPM=(1-k)PM=BC,
AB2+AC2=2×(BC)2+BC2=BC2,
即AB2+AC2=BC2
分析:(1)根據(jù)中點(diǎn)的定義可得BM=CM,然后利用“角角邊”證明△BME和△CMD全等,再根據(jù)全等三角形對(duì)應(yīng)邊相等即可得證;
(2)①②根據(jù)直角三角形斜邊上的中線(xiàn)等于斜邊的一半可得PD=BC,然后求出BC=AD,再根據(jù)勾股定理列式其解即可;
③設(shè)EM=DM=a,表示出AE、AD,然后根據(jù)勾股定理列式表示出AB2、AC2,再求出AB2+AC2,再次利用勾股定理列式求出BE2+x2=CD2+x2=BC2,然后根據(jù)勾股比用PM表示出AM,再根據(jù)直角三角形斜邊上的中線(xiàn)等于斜邊的一半可得PM=BC,然后分△ABC是銳角三角形與鈍角三角形兩種情況代入進(jìn)行計(jì)算即可得解.
點(diǎn)評(píng):本題考查了勾股定理的應(yīng)用,全等三角形的判定與性質(zhì),直角三角形斜邊上的中線(xiàn)等于斜邊的一半的性質(zhì),讀懂題目信息,在不同的直角三角形中利用勾股定理列式用AM2表示出AB2+AC2是解題的關(guān)鍵,也是本題的難點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某興趣小組在學(xué)習(xí)了勾股定理之后提出:“銳(鈍)角三角形有沒(méi)有類(lèi)似于勾股定理的結(jié)論”的問(wèn)題.首先定義了一個(gè)新的概念:如圖(1)△ABC中,M是BC的中點(diǎn),P是射線(xiàn)MA上的點(diǎn),設(shè)
APPM
=k,若∠BPC=90°,則稱(chēng)k為勾股比.

(1)如圖(1),過(guò)B、C分別作中線(xiàn)AM的垂線(xiàn),垂足為E、D.求證:CD=BE.
(2)①如圖(2),當(dāng)=1,且AB=AC時(shí),AB2+AC2=
2.5
2.5
BC2(填一個(gè)恰當(dāng)?shù)臄?shù)).
②如圖(1),當(dāng)k=1,△ABC為銳角三角形,且AB≠AC時(shí),①中的結(jié)論還成立嗎?若成立,請(qǐng)寫(xiě)出證明過(guò)程;若不成立,也請(qǐng)說(shuō)明理由;
③對(duì)任意銳角或鈍角三角形,如圖(1)、(3),請(qǐng)用含勾股比k的表達(dá)式直接表示AB2+AC2與BC2的關(guān)系(寫(xiě)出銳角或鈍角三角形中的一個(gè)即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案