(2005•中原區(qū))如圖,已知⊙O的直徑為10,P為⊙O內(nèi)一點,且OP=4,則過點P且長度小于6的弦共有    條.
【答案】分析:過P點的最短弦是垂直于OP的弦.求其長度后解答.
解答:解:過點P作弦AB⊥OP,則AB即是過點P的最短的弦,
根據(jù)垂徑定理及其勾股定理,可以計算AB=6,
所以過點P且長度小于6的弦有0條.
點評:首先能夠正確作出過圓內(nèi)一點的最短的弦,然后根據(jù)勾股定理以及垂徑定理進行計算.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圖形的相似》(04)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(08)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一次函數(shù)》(05)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《一元二次方程》(07)(解析版) 題型:解答題

(2005•中原區(qū))如圖,已知平面直角坐標系中三個點A(-8,0)、B(2,0)、C,O為坐標原點.以AB為直徑的⊙M與y軸的負半軸交于點D.
(1)求直線CD的解析式;
(2)求證:直線CD是⊙M的切線;
(3)過點A作AE⊥CD,垂足為E,且AE與⊙M相交于點F,求一個一元二次方程,使它的兩個根分別是AE和AF.

查看答案和解析>>

同步練習冊答案