【題目】有紅、黃兩個布袋,紅布袋中有兩個完全相同的小球,分別標(biāo)有數(shù)字24.黃布袋中有三個完全相同的小球,分別標(biāo)有數(shù)字﹣2,﹣4和﹣6.小賢先從紅布袋中隨機(jī)取出一個小球,記錄其標(biāo)有的數(shù)字為x,再從黃布袋中隨機(jī)取出一個小球,記錄其標(biāo)有的數(shù)字為y,這樣就確定點(diǎn)M的一個坐標(biāo)為(xy

1)用列表或畫樹狀圖的方法寫出點(diǎn)M的所有可能坐標(biāo);

2)求點(diǎn)M落在雙曲線y上的概率.

【答案】1)點(diǎn)M的所有可能坐標(biāo)為:(2,﹣2),(2,﹣4),(2,﹣6),(4,﹣2),(4,﹣4),(4,﹣6);(2

【解析】

1)依據(jù)題意用列表法或畫樹狀圖法分析所有等可能的出現(xiàn)結(jié)果,本題可采用畫樹狀圖法.

2)根據(jù)概率公式即可求出該事件的概率.

1)畫樹狀圖得:

∴點(diǎn)M的所有可能坐標(biāo)為:(2,﹣2),(2,﹣4),(2,﹣6),(4,﹣2),(4,﹣4),(4,﹣6);

2)點(diǎn)M落在雙曲線y上的有(2,﹣4)與(4,﹣2),

∴點(diǎn)M落在雙曲線y上的概率為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.

(1)求二次函數(shù)與一次函數(shù)的解析式;

(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)的圖象與反比例函數(shù)的圖象交于A(﹣2,m),B(4,﹣2)兩點(diǎn),與軸交于C點(diǎn),過A作AD⊥軸于D.

(1)求這兩個函數(shù)的解析式;

(2)求△ADC的面積.

(3)根據(jù)圖象直接寫出不等式的解集

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】教材呈現(xiàn):下圖是華師版八年級上冊數(shù)學(xué)教材第96頁的部分內(nèi)容.

請根據(jù)教材中的分析,結(jié)合圖①,寫出角平分線的性質(zhì)定理完整的證明過程.

定理應(yīng)用:

如圖②,在四邊形中,,點(diǎn)在邊上.平分,平分

1)求證:

2)若,則的長為______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面的材料:

小明同學(xué)遇到這樣一個問題,如圖1,AB=AE,∠ABC=EAD,AD=mAC,點(diǎn)P在線段BC上,∠ADE=ADP+ACB,求的值.

小明研究發(fā)現(xiàn),作∠BAM=AED,交BC于點(diǎn)M,通過構(gòu)造全等三角形,將線段BC轉(zhuǎn)化為用含AD的式子表示出來,從而求得的值(如圖2).

1)小明構(gòu)造的全等三角形是:_________________;

2)請你將小明的研究過程補(bǔ)充完整,并求出的值.

3)參考小明思考問題的方法,解決問題:

如圖3,若將原題中“AB=AE”改為“AB=kAE”,“點(diǎn)P在線段BC上”改為“點(diǎn)P在線段BC的延長線上”,其它條件不變,若∠ACB=2α,求:的值(結(jié)果請用含α,km的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)O為△ABC外接圓的圓心,以AB為腰作等腰△ABD,使底邊AD經(jīng)過點(diǎn)O,并分別交BC于點(diǎn)E、交⊙O于點(diǎn)F,若∠BAD30°

1)求證:BD是⊙O的切線;

2)當(dāng)CA2CECB時,

①求∠ABC的度數(shù);

的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,以等邊ABC的邊BC為直徑作⊙O,分別交AB,AC于點(diǎn)D,E,過點(diǎn)DDFACAC于點(diǎn)F.

(1)求證:DF是⊙O的切線;

2)若等邊ABC的邊長為8,求由、DF、EF圍成的陰影部分面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片 ABCD 中,AD=5cm,AB=4cm,將矩形紙片 ABCD 沿直線l 折疊,使點(diǎn) A 落在邊 BC 上的 A'處,當(dāng)直線 l 恰好過點(diǎn) D 時,用直尺和圓規(guī)在圖中作出直線 l,(保留作圖 痕跡,不寫作法),設(shè)點(diǎn) A'與點(diǎn) B 的距離為 x cm.并求出 x 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在陽光體育活動時間,小亮、小瑩、小芳到學(xué)校乒乓球室打乒乓球,當(dāng)時只有一副空球桌,他們只能選兩人打第一場.

1)如果確定小亮打第一場,再從其余兩人中隨機(jī)選取一人打第一場,選中小瑩的概率是________

2)如果確定小亮打第一場,用投擲硬幣的方法確定小瑩、小芳誰打第一場,并決定小亮做裁判,由小亮拋擲一枚硬幣,規(guī)定正面朝上小瑩勝,反面朝上小芳勝,最終勝兩局以上者(包括兩局)打第一場.小亮第一次投擲的結(jié)果是正面朝上,請用列表或畫樹狀圖的方法表示最后兩次投擲硬幣的所有情況,并求小芳打第一場的概率.

查看答案和解析>>

同步練習(xí)冊答案