【題目】如圖,已知△ABC內(nèi)接于⊙O,點(diǎn)C在劣弧AB上(不與點(diǎn)A,B重合),點(diǎn)D為弦BC的中點(diǎn),DE⊥BC,DE與AC的延長線交于點(diǎn)E,射線AO與射線EB交于點(diǎn)F,與⊙O交于點(diǎn)G,設(shè)∠GAB=ɑ,∠ACB=β,∠EAG+∠EBA=γ,
(1)點(diǎn)點(diǎn)同學(xué)通過畫圖和測量得到以下近似數(shù)據(jù):
ɑ | 30° | 40° | 50° | 60° |
β | 120° | 130° | 140° | 150° |
γ | 150° | 140° | 130° | 120° |
猜想:β關(guān)于ɑ的函數(shù)表達(dá)式,γ關(guān)于ɑ的函數(shù)表達(dá)式,并給出證明:
(2)若γ=135°,CD=3,△ABE的面積為△ABC的面積的4倍,求⊙O半徑的長.
【答案】
(1)
解:β=α+90°,γ=﹣α+180°
連接OB,
∴由圓周角定理可知:2∠BCA=360°﹣∠BOA,
∵OB=OA,
∴∠OBA=∠OAB=α,
∴∠BOA=180°﹣2α,
∴2β=360°﹣(180°﹣2α),
∴β=α+90°,
∵D是BC的中點(diǎn),DE⊥BC,
∴OE是線段BC的垂直平分線,
∴BE=CE,∠BED=∠CED,∠EDC=90°
∵∠BCA=∠EDC+∠CED,
∴β=90°+∠CED,
∴∠CED=α,
∴∠CED=∠OBA=α,
∴O、A、E、B四點(diǎn)共圓,
∴∠EBO+∠EAG=180°,
∴∠EBA+∠OBA+∠EAG=180°,
∴γ+α=180°
(2)
解:當(dāng)γ=135°時(shí),此時(shí)圖形如圖所示,
∴α=45°,β=135°,
∴∠BOA=90°,∠BCE=45°,
由(1)可知:O、A、E、B四點(diǎn)共圓,
∴∠BEC=90°,
∵△ABE的面積為△ABC的面積的4倍,
∴ ,
∴ ,
設(shè)CE=3x,AC=x,
由(1)可知:BC=2CD=6,
∵∠BCE=45°,
∴CE=BE=3x,
∴由勾股定理可知:(3x)2+(3x)2=62,
x= ,
∴BE=CE=3 ,AC= ,
∴AE=AC+CE=4 ,
在Rt△ABE中,
由勾股定理可知:AB2=(3 )2+(4 )2,
∴AB=5 ,
∵∠BAO=45°,
∴∠AOB=90°,
在Rt△AOB中,設(shè)半徑為r,
由勾股定理可知:AB2=2r2,
∴r=5,
∴⊙O半徑的長為5.
【解析】(1)由圓周角定理即可得出β=α+90°,然后根據(jù)D是BC的中點(diǎn),DE⊥BC,可知∠EDC=90°,由三角形外角的性質(zhì)即可得出∠CED=α,從而可知O、A、E、B四點(diǎn)共圓,由圓內(nèi)接四邊形的性質(zhì)可知:∠EBO+∠EAG=180°,即γ=﹣α+180°;(2)由(1)及γ=135°可知∠BOA=90°,∠BCE=45°,∠BEC=90°,由于△ABE的面積為△ABC的面積的4倍,所以 ,根據(jù)勾股定理即可求出AE、AC的長度,從而可求出AB的長度,再由勾股定理即可求出⊙O的半徑r;
【考點(diǎn)精析】通過靈活運(yùn)用余角和補(bǔ)角的特征和三角形的面積,掌握互余、互補(bǔ)是指兩個(gè)角的數(shù)量關(guān)系,與兩個(gè)角的位置無關(guān);三角形的面積=1/2×底×高即可以解答此題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=3,BC=4,點(diǎn)D,E分別在AC,BC上(點(diǎn)D與點(diǎn)A,C不重合),且∠DEC=∠A,將△DCE繞點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得到△DC′E′.當(dāng)△DC′E′的斜邊、直角邊與AB分別相交于點(diǎn)P,Q(點(diǎn)P與點(diǎn)Q不重合)時(shí),設(shè)CD=x,PQ=y.
(1)求證:∠ADP=∠DEC;
(2)求y關(guān)于x的函數(shù)解析式,并直接寫出自變量x的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校九年級(jí)10個(gè)班級(jí)師生舉行畢業(yè)文藝匯演,每班2個(gè)節(jié)目,有歌唱與舞蹈兩類節(jié)目,年級(jí)統(tǒng)計(jì)后發(fā)現(xiàn)唱歌類節(jié)目數(shù)比舞蹈類節(jié)目數(shù)的2倍少4個(gè).
(1)九年級(jí)師生表演的歌唱與舞蹈類節(jié)目數(shù)各有多少個(gè)?
(2)該校七、八年級(jí)師生有小品節(jié)目參與,在歌唱、舞蹈、小品三類節(jié)目中,每個(gè)節(jié)目的演出平均用時(shí)分別是5分鐘、6分鐘、8分鐘,預(yù)計(jì)所有演出節(jié)目交接用時(shí)共花15分鐘,若從20:00開始,22:30之前演出結(jié)束,問參與的小品類節(jié)目最多能有多少個(gè)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解某校九年級(jí)學(xué)生的跳高水平,隨機(jī)抽取該年級(jí)50名學(xué)生進(jìn)行跳高測試,并把測試成績繪制成如圖所示的頻數(shù)表和未完成的頻數(shù)直方圖(每組含前一個(gè)邊界值,不含后一個(gè)邊界值).
某校九年級(jí)50名學(xué)生跳高測試成績的頻數(shù)表
組別(m) | 頻數(shù) |
1.09~1.19 | 8 |
1.19~1.29 | 12 |
1.29~1.39 | A |
1.39~1.49 | 10 |
(1)求A的值,并把頻數(shù)直方圖補(bǔ)充完整;
(2)該年級(jí)共有500名學(xué)生,估計(jì)該年級(jí)學(xué)生跳高成績在1.29m(含1.29m)以上的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,E是BC上一點(diǎn),連接AE,將矩形沿AE翻折,使點(diǎn)B落在CD邊F處,連接AF,在AF上取點(diǎn)O,以O(shè)為圓心,OF長為半徑作⊙O與AD相切于點(diǎn)P.若AB=6,BC=3 ,則下列結(jié)論:①F是CD的中點(diǎn);②⊙O的半徑是2;③AE= CE;④S陰影= .其中正確結(jié)論的序號(hào)是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC內(nèi)接于⊙O,CD平分∠ACB交⊙O于D,過點(diǎn)D作PQ∥AB分別交CA、CB延長線于P、Q,連接BD.
(1)求證:PQ是⊙O的切線;
(2)求證:BD2=ACBQ;
(3)若AC、BQ的長是關(guān)于x的方程x+ =m的兩實(shí)根,且tan∠PCD= ,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC為等邊三角形,AB=2.若P為△ABC內(nèi)一動(dòng)點(diǎn),且滿足∠PAB=∠ACP,則線段PB長度的最小值為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中BC=2,AB=2 ,AC=b,且關(guān)于x的方程x2﹣4x+b=0有兩個(gè)相等的實(shí)數(shù)根,則AC邊上的中線長為 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com