已知:一元二次方程x2+px+q+1=0的一根為2.
(1)求q關(guān)于p的關(guān)系式;
(2)求證:拋物線y=x2+px+q+1與x軸總有交點;
(3)當p=-1時,(2)中的拋物線與x軸交于A、B兩點,與y軸交于C點,A在B的左側(cè),若P點在拋物線上,當S△BPC=4時,求P點的坐標.
分析:(1)將2代替一元二次方程x2+px+q+1=0中的x即可得到pq之間的關(guān)系式;
(2)證明拋物線與x軸總有交點即可證明其根的判別式中大于零即可;
(3)利用p=-1求得拋物線的解析式,利用圍成的三角形的面積求得P點的坐標即可.
解答:精英家教網(wǎng)(1)解:∵方程的根為2,
∴4+2p+q+1=0,
∴q=-2p-5;

(2)證明:△=p2-4(q+1),
=p2-4(-2p-5+1),
=p2+8p+16,
=(p+4)2,
∵(p+4)2≥0,
∴△≥0,
∴拋物線y=x2+px+q+1與x軸總有交點;

(3)解:當p=-1時,q=-2×(-1)-5=-3,
∴拋物線的解析式為:y=x2-x-2.
∵B(2,0)C(0,-2),
∴BC=2
2
,∠OBC=45°.
∵S△PBC=4.
1
2
BC•hBC=4

hBC=2
2

過B點作BD⊥BC交y軸于點D,
∴DO=BO=CO,
∴D點的坐標為:(0,2),
∴BD=2
2
,
過D點作DE∥BC交x軸于點E,
∵∠ODB=∠OBD=45°∠EDB=90°,
∴∠EDO=45°,
∴E(-2,0),
設(shè)直線DE的解析式為y=kx+b(k≠0),
-2k+b=0
b=2
,
∴解得
k=1
b=2
,
∴直線DE的解析式為y=x+2.
設(shè)直線DE與拋物線的交點P(x,y),
y=x+2
y=x2-x-2
,
x1=1+
5
y1=3+
5
x2=1-
5
y2=3-
5

p1(1-
5
,3-
5
)
p2(1+
5
,3+
5
)
點評:本題考查了函數(shù)綜合知識,函數(shù)綜合題是初中數(shù)學中覆蓋面最廣、綜合性最強的題型.近幾年的中考壓軸題多以函數(shù)綜合題的形式出現(xiàn).解決函數(shù)綜合題的過程就是轉(zhuǎn)化思想、數(shù)形結(jié)合思想、分類討論思想、方程思想的應(yīng)用過程.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

10、已知關(guān)于x一元二次方程ax2+bx+c=0有一個根為1,則a+b+c=
0

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知:一元二次方程kx2+4x+4=0(k≠0),當k為何值時方程有兩個相等的實數(shù)根( 。
A、k=
1
2
B、k=-
1
2
C、k=1
D、k=-1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•婁底)已知:一元二次方程
1
2
x2+kx+k-
1
2
=0.
(1)求證:不論k為何實數(shù)時,此方程總有兩個實數(shù)根;
(2)設(shè)k<0,當二次函數(shù)y=
1
2
x2+kx+k-
1
2
的圖象與x軸的兩個交點A、B間的距離為4時,求此二次函數(shù)的解析式;
(3)在(2)的條件下,若拋物線的頂點為C,過y軸上一點M(0,m)作y軸的垂線l,當m為何值時,直線l與△ABC的外接圓有公共點?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知如下一元二次方程:
第1個方程:3x2+2x-1=0;
第2個方程:5x2+4x-1=0;
第3個方程:7x2+6x-1=0;

按照上述方程的二次項系數(shù)、一次項系數(shù)、常數(shù)項的排列規(guī)律,則第8個方程為
17x2 +16x-1=0
17x2 +16x-1=0
;第n(n為正整數(shù))個方程為
(2n+1)x2 +2nx-1=0
(2n+1)x2 +2nx-1=0
,其兩個實數(shù)根為
x1=-1,x2=
1
2n+1
x1=-1,x2=
1
2n+1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知一個一元二次方程的兩根分別為x1=1,x2=-2,請你寫出符合這兩個根的一個一元二次方程:
x2+x-2=0(答案不唯一).
x2+x-2=0(答案不唯一).

查看答案和解析>>

同步練習冊答案