關(guān)于的方程有兩個(gè)不相等的實(shí)數(shù)根.

(1)求的取值范圍.

(2)是否存在實(shí)數(shù),使方程的兩個(gè)實(shí)數(shù)根的倒數(shù)和等于0?若存在,求出的值;若不存在,說明理由.

 

【答案】

(1) >-1,且≠   (2)不存在,理由見解析

【解析】解:(1)由=(+2)2-4·>0,解得>-1.

又∵ ≠0,∴ 的取值范圍是>-1,且≠0.

(2)不存在符合條件的實(shí)數(shù).

理由如下:設(shè)方程2+(+2)+=0的兩根分別為,由根與系數(shù)的關(guān)系有:

,

,則=0.∴ .

由(1)知,時(shí),<0,原方程無(wú)實(shí)解.

∴ 不存在符合條件的的值.

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:中華題王 數(shù)學(xué) 九年級(jí)上 (北師大版) 北師大版 題型:044

已知關(guān)于x的方程(k-1)x2+(2k-3)x+k+1=0有兩個(gè)不相等的實(shí)數(shù)根x1,x2

(1)求k的取值范圍.

(2)是否存在實(shí)數(shù)k,使方程的兩實(shí)數(shù)根互為相

反數(shù)?如果存在,求出k的值;如果不存在,請(qǐng)說明理由.

解:(1)根據(jù)題意,得

△=(2k-3)2-4(k-1)(k+1)

=4k2-12k+9-4k2+4

=-12k+13>0

∴k<

∴k<時(shí),方程有兩個(gè)不相等的實(shí)數(shù)根.

(2)存在.如果方程的兩個(gè)實(shí)數(shù)根互為相反數(shù),則

x1+x2=0

解得k=.檢驗(yàn)知,k==0的解.

所以,當(dāng)k=時(shí),方程的兩個(gè)實(shí)數(shù)根x1與x2互為相反數(shù).

當(dāng)你讀了上面的解答過程后,請(qǐng)判斷是否有錯(cuò)誤?如果有,請(qǐng)指出錯(cuò)誤之處,并直接寫出正確的答案.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:013

函數(shù)的圖像,如圖所示,那么關(guān)于x的方程是的根的情況是

[  ]

A.有兩個(gè)不相等的實(shí)數(shù)根
B.有兩個(gè)相異實(shí)數(shù)根
C.有兩個(gè)相等的實(shí)數(shù)根
D.沒有實(shí)數(shù)根

查看答案和解析>>

同步練習(xí)冊(cè)答案