(2005•中山)如圖,已知CD⊥AB,BE⊥AC,垂足分別為D、E,BE、CD交于點O,且AO平分∠BAC,那么圖中全等三角形共有    對.
【答案】分析:根據(jù)已知條件可以找出題目中有哪些相等的角以及線段,然后猜想可能全等的三角形,然后一一進行驗證.
解答:解:∵CD⊥AB,BE⊥AC,垂足分別為D、E,且AO平分∠BAC,
∴△ODA≌△OEA,
∴∠B=∠C,AD=AE,
∴△ADC≌△AEB,
∴AB=AC,
∴△OAC≌△OAB,
∴△COE≌△OBD.
故填4.
點評:本題考查了三角形全等的判定方法;提出猜想,驗證猜想是解決幾何問題的基本方法,做題時要注意從已知條件開始思考結(jié)合全等的判定方法逐一判斷,做到不重不漏,由易到難.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(06)(解析版) 題型:解答題

(2005•中山)如圖所示,在平面直角坐標(biāo)中,拋物線的頂點P到x軸的距離是4,拋物線與x軸相交于O、M兩點,OM=4;矩形ABCD的邊BC在線段的OM上,點A、D在拋物線上.
(1)請寫出P、M兩點坐標(biāo),并求出這條拋物線的解析式;
(2)設(shè)矩形ABCD的周長為l,求l的最大值;
(3)連接OP、PM,則△PMO為等腰三角形,請判斷在拋物線上是否存在點Q(除點M外),使得△OPQ也是等腰三角形,簡要說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年廣東省中山市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•中山)如圖所示,在平面直角坐標(biāo)中,拋物線的頂點P到x軸的距離是4,拋物線與x軸相交于O、M兩點,OM=4;矩形ABCD的邊BC在線段的OM上,點A、D在拋物線上.
(1)請寫出P、M兩點坐標(biāo),并求出這條拋物線的解析式;
(2)設(shè)矩形ABCD的周長為l,求l的最大值;
(3)連接OP、PM,則△PMO為等腰三角形,請判斷在拋物線上是否存在點Q(除點M外),使得△OPQ也是等腰三角形,簡要說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年廣東省中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2005•中山)如圖所示,在平面直角坐標(biāo)中,拋物線的頂點P到x軸的距離是4,拋物線與x軸相交于O、M兩點,OM=4;矩形ABCD的邊BC在線段的OM上,點A、D在拋物線上.
(1)請寫出P、M兩點坐標(biāo),并求出這條拋物線的解析式;
(2)設(shè)矩形ABCD的周長為l,求l的最大值;
(3)連接OP、PM,則△PMO為等腰三角形,請判斷在拋物線上是否存在點Q(除點M外),使得△OPQ也是等腰三角形,簡要說明你的理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《圓》(09)(解析版) 題型:填空題

(2005•中山)如圖,PA、PB是⊙O的切線,點A、B為切點,AC是⊙O的直徑,∠BAC=20°,則∠P的大小是    度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2005年全國中考數(shù)學(xué)試題匯編《三角形》(05)(解析版) 題型:填空題

(2005•中山)如圖,已知CD⊥AB,BE⊥AC,垂足分別為D、E,BE、CD交于點O,且AO平分∠BAC,那么圖中全等三角形共有    對.

查看答案和解析>>

同步練習(xí)冊答案