【題目】如圖,在中,的角平分線.以為圓心,為半徑作

1)求證:的切線;

2)已知于點(diǎn),延長于點(diǎn),,求的值.

3)在(2)的條件下,設(shè)的半徑為,求的長.

【答案】(1)見解析;(2);(3)

【解析】

1)如下圖,過點(diǎn)于點(diǎn),證OF=OC即可;

2)如下圖,連接,先證,得到,再根據(jù)得出,從而求出;

3)設(shè),利用可求得AE的長,,設(shè)設(shè),然后利用得出BO的長,接著在利用勾股定理求得BF的長,進(jìn)而得出AB的長.

1)證明:如圖,過點(diǎn)于點(diǎn)

平分,,,

,

的半徑,

過點(diǎn),

的切線;

2)解:如圖,連接

的直徑,

,

,

,

,

,

,

,

,

,

,

;

3)解:由(2)可知:,

設(shè),,

,

,

解得:(不合題意,舍去)

,,

由(1)可知:,

,

,

,

設(shè),

,

,

中,

,

,

解得:(不合題意,舍去),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)PAB延長線上一點(diǎn),連接CP

(1)如圖1,若∠PCB=∠A

①求證:直線PC是⊙O的切線;

②若CPCA,OA2,求CP的長;

(2)如圖2,若點(diǎn)M是弧AB的中點(diǎn),CMAB于點(diǎn)NMNMC9,求BM的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知拋物線y=﹣x2+2x+3x軸交于A、B兩點(diǎn),與y軸交于點(diǎn)C,頂點(diǎn)為D,連接BC

1)點(diǎn)G是直線BC上方拋物線上一動點(diǎn)(不與B、C重合),過點(diǎn)Gy軸的平行線交直線BC于點(diǎn)E,作GFBC于點(diǎn)F,點(diǎn)M、N是線段BC上兩個動點(diǎn),且MNEF,連接DMGN.當(dāng)△GEF的周長最大時,求DM+MN+NG的最小值;

2)如圖2,連接BD,點(diǎn)P是線段BD的中點(diǎn),點(diǎn)Q是線段BC上一動點(diǎn),連接DQ,將△DPQ沿PQ翻折,且線段DP的中點(diǎn)恰好落在線段BQ上,將△AOC繞點(diǎn)O逆時針旋轉(zhuǎn)60°得到△AOC′,點(diǎn)T為坐標(biāo)平面內(nèi)一點(diǎn),當(dāng)以點(diǎn)QA′、C′、T為頂點(diǎn)的四邊形是平行四邊形時,求點(diǎn)T的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD中,FAB上一點(diǎn),EBC延長線上一點(diǎn),且AFEC,連結(jié)EF,DEDF,MFE中點(diǎn),連結(jié)MC,設(shè)FEDC相交于點(diǎn)N.則4個結(jié)論:①DEDF;②∠CME=CDE;③DG2=GN GE;④若BF2,則正確的結(jié)論有( )個.

A.4B.3C.2D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,拋物線的頂點(diǎn)為C1,4),交x軸于A、B兩點(diǎn),交y軸于點(diǎn)D,其中點(diǎn)B的坐標(biāo)為(3,0).

1)求拋物線的解析式;

2)如圖2,點(diǎn)EBD上方拋物線上的一點(diǎn),連接AEDB于點(diǎn)F,若AF=2EF,求出點(diǎn)E的坐標(biāo).

3)如圖3,點(diǎn)M的坐標(biāo)為(,0),點(diǎn)P是對稱軸左側(cè)拋物線上的一點(diǎn),連接MP,將MP沿MD折疊,若點(diǎn)P恰好落在拋物線的對稱軸CE上,請求出點(diǎn)P的橫坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一次初中生田徑運(yùn)動會上,根據(jù)參加男子跳高初賽的運(yùn)動員的成績(單位:m),繪制出如下的統(tǒng)計圖①和圖②,請根據(jù)相關(guān)信息,解答下列問題:

(Ⅰ)圖①中a的值為   

(Ⅱ)求統(tǒng)計的這組初賽成績數(shù)據(jù)的平均數(shù)、眾數(shù)和中位數(shù)(結(jié)果保留小數(shù)點(diǎn)后兩位);

(Ⅲ)根據(jù)這組初賽成績,由高到低確定7人進(jìn)入復(fù)賽,請直接寫出初賽成績?yōu)?/span>1.60m的運(yùn)動員能否進(jìn)入復(fù)賽.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,RtABE中,∠B=90°,AB=BE,將ABE繞點(diǎn)A逆時針旋轉(zhuǎn)45°,得到AHD,過DDCBEBE的延長線于點(diǎn)C,連接BH并延長交DC于點(diǎn)F,連接DEBF于點(diǎn)O.下列結(jié)論:①DE平分∠HDC;②DO=OE;③HBF的中點(diǎn);④BC-CF=2CE;⑤CD=HF,其中正確的有(

A.5B.4C.3D.2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系 xOy中,反比例函數(shù) y x 0 的圖象經(jīng)過點(diǎn) A2,3 ,直線y ax , y 與反比例函數(shù) y x 0 分別交于點(diǎn) BC兩點(diǎn).

1)直接寫出 k 的值 ;

2)由線段 OBOC和函數(shù) y x 0 B,C 之間的部分圍成的區(qū)域(不含邊界) W

當(dāng) A點(diǎn)與 B點(diǎn)重合時,直接寫出區(qū)域 W 內(nèi)的整點(diǎn)個數(shù) ;

若區(qū)域 W內(nèi)恰有 8個整點(diǎn),結(jié)合函數(shù)圖象,直接寫出 a的取值范圍

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線交x軸于AB兩點(diǎn)(AB右邊),A3,0),B10)交y軸于C點(diǎn),C03),連接AC

1)求拋物線的解析式;

2P為拋物線上的一點(diǎn),作PECAE點(diǎn),且CE=3PE,求P點(diǎn)坐標(biāo);

3)將原拋物線向上平移1個單位拋物線的對稱軸交x軸于H點(diǎn),過H作直線MH,NH,當(dāng)MHNH時,求MN恒過的定點(diǎn)坐標(biāo).

查看答案和解析>>

同步練習(xí)冊答案