在Rt△ABC中,∠C=90°,AC=9,BC=12,則C點(diǎn)到AB的距離為( )
A.
B.
C.
D.
【答案】分析:根據(jù)題意作出圖形,如圖所示,在直角三角形ABC中,由AC及BC的長(zhǎng),利用勾股定理求出AB的長(zhǎng),然后過C作CD垂直于AB,由直角三角形的面積可以由兩直角邊乘積的一半來(lái)求,也可以由斜邊AB乘以斜邊上的高CD除以2來(lái)求,兩者相等,將AC,AB及BC的長(zhǎng)代入求出CD的長(zhǎng),即為C到AB的距離.
解答:解:根據(jù)題意畫出相應(yīng)的圖形,如圖所示:

在Rt△ABC中,AC=9,BC=12,
根據(jù)勾股定理得:AB==15,
過C作CD⊥AB,交AB于點(diǎn)D,
又∵S△ABC=AC•BC=AB•CD,
∴CD===,
則點(diǎn)C到AB的距離是
故選B.
點(diǎn)評(píng):此題考查了勾股定理,點(diǎn)到直線的距離,以及三角形面積的求法,熟練掌握勾股定理是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)已知:如圖,在Rt△ABC中,∠C=90°,AC=12,BC=9,D是AB上一點(diǎn),以BD為直徑的⊙O切AC于E,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,已知:在Rt△ABC中,∠C=90°,AB=12,點(diǎn)D是AB的中點(diǎn),點(diǎn)O是△ABC的重心,則OD的長(zhǎng)為( 。
A、12B、6C、2D、3

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,已知a及∠A,則斜邊應(yīng)為( 。
A、asinA
B、
a
sinA
C、acosA
D、
a
cosA

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

在Rt△ABC中,∠C=90°,CD⊥AB于D,CD:DB=1:3.求tanA和tanB.(要求畫出圖形)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在Rt△ABC中,∠C=90°,CD⊥AB于D,且AD:BD=9:4,則AC:BC的值為(  )
A、9:4B、9:2C、3:4D、3:2

查看答案和解析>>

同步練習(xí)冊(cè)答案