【題目】從,,,四個數(shù)中任取兩個數(shù)作為,分別代入一元二次方程中,那么所有的一元二次方程中有實數(shù)解的一元二次方程的概率為________.
【答案】
【解析】
首先利用列表法求得所有點的情況,然后求得滿足ax2+bx+1=0是一元二次方程的個數(shù),再由一元二次方程有實數(shù)解,即可求得答案.
列表得:
a b | -2 | 0 | 1 | 2 |
-2 | (0,-2) | (1,-2) | (2,-2) | |
0 | (-2,0) | (1,0) | (2,0) | |
1 | (-2,1) | (0,1) | (2,1) | |
2 | (-2,2) | (0,2) | (1,2) |
∴一共有12種情況,其中滿足ax2+bx+1=0是一元二次方程的有9個,
∵若一元二次方程有實數(shù)解,則△=b2-4a≥0,
∴符合要求的點有(-2,0),(1,-2),(1,2),(-2,2),(-2,1).
∴所有的一元二次方程中有實數(shù)解的一元二次方程的概率為.
故答案為:.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一次函數(shù)y=kx+b的圖象交x軸于點A(﹣2,0),交y軸于點B,與兩坐標(biāo)軸所圍成的三角形的面積為8,則該函數(shù)的表達式為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,C為線段AE上一動點(不與點A,E重合),在AE同側(cè)分別作正△ABC和正△CDE,AD與BE交于點O,AD與BC交于點P,BE與CD交于點Q,連接PQ.以下四個結(jié)論:①△ACD≌△BCE;②AD=BE;③∠AOB=60°;④△CPQ是等邊三角形.其中正確的是( 。
A. ①②③④B. ②③④C. ①③④D. ①②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,.在邊上有個不同的點,,,¨¨¨¨,,過這個點分別作的內(nèi)接矩形,,¨¨¨¨,,設(shè)每個矩形的周長分別為,,¨¨¨¨,,則¨¨¨¨________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=x-5,令x= ,1, ,2, ,3,,4,,5,可得函數(shù)圖象上的十個點.在這十個點中隨機取兩個點P(x1,y1),Q(x2,y2),則P,Q兩點在同一反比例函數(shù)圖象上的概率是( )
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,某商場設(shè)立了一個可以自由轉(zhuǎn)動的轉(zhuǎn)盤,并規(guī)定:顧客購物元以上就能獲得一次轉(zhuǎn)動轉(zhuǎn)盤的機會,當(dāng)轉(zhuǎn)盤停止時,指針落在哪一區(qū)域就可以獲得相應(yīng)的獎品.表是活動進行中的一組統(tǒng)計數(shù)據(jù):
計算并完成表格:
轉(zhuǎn)動轉(zhuǎn)盤的次數(shù) | ||||||
落在“鉛筆”的次數(shù) | ||||||
落在“鉛筆”的頻率 | ________ | ________ | ________ | ________ | ________ | ________ |
請估計,當(dāng)很大時,頻率將會接近多少?
假如你去轉(zhuǎn)動轉(zhuǎn)盤一次,你獲得可樂的概率是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù).
用配方法將化成的形式;
在平面直角坐標(biāo)系中,畫出這個二次函數(shù)的圖象;
當(dāng)取何值時,隨的增大而減少?
當(dāng)取何值是,,,,
當(dāng)時,求的取值范圍;
求函數(shù)圖象與兩坐標(biāo)軸交點所圍成的三角形的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知Rt△ABC中,∠ACB=90°.請完成以下任務(wù).
(1)尺規(guī)作圖:①作∠A的平分線,交CB于點D;
②過點D作AB的垂線,垂足為點E.請保留作圖痕跡,不寫作法,并標(biāo)明字母.
(2)若AC=3,BC=4,求CD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,在Rt△ABC中,∠C=90°,AC=15,BC=8,D為AB的中點,E點在邊AC上,將△BDE沿DE折疊得到△B1DE,若△B1DE與△ADE重疊部分面積為△ADE面積的一半,則CE=_____________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com