已知,四邊形ABCD中,∠ABC=∠ADB=90°,CE⊥BD于E,AB=5,AD=3,BC=2
3
,求四邊形ABCD的面積S四邊形ABCD
在Rt△ABD中,AB=5,AD=3,
∴BD=
AB2-AD2
=
52-32
=4,
∵∠ABD+∠CBD=∠BCE+∠CBD=90°,
∴∠ABD=∠BCE,
∴cos∠ABD=
BD
AB
=
4
5
=cos∠BCE=
CE
BC
=
CE
2
3
,
解得:CE=
8
3
5
,
∴S四邊形ABCD=S△ABD+S△BCD=
1
2
AD×BD+
1
2
BD×CE=
1
2
×3×4
+
1
2
×4×
8
3
5
=6+
16
3
5
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖是一個(gè)外輪廓為矩形的機(jī)器零件平面示意圖,根據(jù)圖中標(biāo)出尺寸(單位:mm)計(jì)算兩圓孔中心A和B的距離為( 。
A.90㎜B.100㎜C.120㎜D.150㎜

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

仔細(xì)觀(guān)察圖,認(rèn)真分析各式,然后解答問(wèn)題:
(1)請(qǐng)用含有n(n是正整數(shù))的等式表示上述變化規(guī)律;
(2)推算出OA10的長(zhǎng)
(3)求出S12+S22+S32+…+S102的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,依次作出四個(gè)直角三角形,且都有一邊長(zhǎng)為1,那么,此圖中最長(zhǎng)的線(xiàn)段的長(zhǎng)度為_(kāi)_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

2002年在北京召開(kāi)的國(guó)際數(shù)學(xué)家大會(huì),會(huì)標(biāo)是以我國(guó)古代數(shù)學(xué)家趙爽弦圖為基礎(chǔ)設(shè)計(jì)的,弦圖是由四個(gè)全等直角三角形與一個(gè)小正方形拼成的一個(gè)大正方形(如圖).如果小正方形的面積為1,大正方形的面積為25,直角三角形中較小的銳角為θ,那么cosθ的值等于______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

正方形ABCD中,AB=1,AB在數(shù)軸上,點(diǎn)A表示的數(shù)是-1,若以點(diǎn)A為圓心,對(duì)角線(xiàn)AC長(zhǎng)為半徑作弧,交數(shù)軸正半軸于點(diǎn)M,則點(diǎn)M表示的數(shù)是______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,在等腰Rt△ABC中,∠ACB=90°,CA=CB,點(diǎn)M、N是AB上任意兩點(diǎn),且∠MCN=45°,點(diǎn)T為AB的中點(diǎn).以下結(jié)論:①AB=
2
AC;②CM2+TN2=NC2+MT2;③AM2+BN2=MN2;④S△CAM+S△CBN=S△CMN.其中正確結(jié)論的序號(hào)是(  )
A.①②③④B.只有①②③C.只有①③④D.只有②④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

△ABC中,∠C=90°,AB=4,BC=2
3
,CD⊥AB于D,則AC=______,CD=______,BD=______,AD=______,S△ABC=______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

在△ABC中,AB=15cm,AC=13cm,高AD=12cm,求BC的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案