如圖,AB∥CD,BF=CE,請?jiān)黾右粋條件________使得△ABE≌△DCF.

AB=DC(或∠A=∠D或∠AEB=∠DFC或AE∥DF)
分析:由已知條件具備一角一邊分別對應(yīng)相等,還缺少一個條件,可添加AB=DC,利用SAS判定其全等.
解答:∵BF=CE,
∴BF-EF=CE-EF,即BE=CF.
∵AB∥CD,
∴∠B=∠C,
可添加AB=DC,
則△ABE≌△ECD.
故答案為AB=DC(或∠A=∠D或∠AEB=∠DFC或AE∥DF).
點(diǎn)評:本題考查三角形全等的判定方法;判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.添加時注意:AAA、SSA不能判定兩個三角形全等,不能添加,根據(jù)已知結(jié)合圖形及判定方法選擇條件是正確解答本題的關(guān)健.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

23、如圖,AB∥CD,∠A=90°,AB=2,BC=3,CD=1,E是AD中點(diǎn).求證:CE⊥BE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,AB∥CD,AD與BC相交于點(diǎn)E,如果AB=2,CD=6,AE=1,那么DE=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

4、如圖,AB∥CD,∠C=80°,∠CAD=60°,則∠BAD的度數(shù)等于(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

34、如圖,AB∥CD,P是BC上的一個動點(diǎn),設(shè)∠CDP=∠1,∠CPD=∠2,請你猜想出∠1、∠2與∠B之間的關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,AB∥CD,∠1=58°,則∠2的度數(shù)是(  )

查看答案和解析>>

同步練習(xí)冊答案