(2010•茂名)已知⊙O1的半徑為R,周長(zhǎng)為C.
(1)在⊙O1內(nèi)任意作三條弦,其長(zhǎng)分別是l1l2l3,求證:l1+l2+l3<C;
(2)如圖,在直角坐標(biāo)系xOy中,設(shè)⊙O1的圓心為O1(R,R).
①當(dāng)直線l:y=x+b(b>0)與⊙O1相切時(shí),求b的值;
②當(dāng)反比例函數(shù)y=(k>0)的圖象與⊙O1有兩個(gè)交點(diǎn)時(shí),求k的取值范圍.

【答案】分析:(1)根據(jù)圓的任意一條弦都小于或等于圓的直徑解答;
(2)①設(shè)直線與圓相切于點(diǎn)M,連接O1M,則O1M⊥l,過(guò)點(diǎn)O1作直線NH⊥x軸,與l交于點(diǎn)N,與x軸交于點(diǎn)H,因?yàn)橹本的k=1,所以直線與x軸的夾角等于45°,△OMN是等腰直角三角形,點(diǎn)N的坐標(biāo)即可表示出來(lái),再把點(diǎn)N的坐標(biāo)代入直線解析式,即可求出b值;
②利用反比例函數(shù)圖象關(guān)于直線y=x對(duì)稱(chēng),作直線y=x的圖象與圓有兩交點(diǎn),根據(jù)直線與x軸的夾角是45°,用圓的半徑表示出兩個(gè)交點(diǎn)坐標(biāo),分別代入反比例函數(shù)表達(dá)式求出k的值,k的取值就在這兩個(gè)數(shù)值之間.
解答:(1)證明:∵l1≤2R,l2≤2R,l3≤2R,
∴l(xiāng)1+l2+l3≤3×2R<π×2R=C,(2分)
因此,l1+l2+l3<C.(3分)

(2)解:①如圖,根據(jù)題意可知⊙O1與x軸,y軸分別相切,
設(shè)直線l與⊙O1相切于點(diǎn)M,
則O1M⊥l,過(guò)點(diǎn)O1作直線NH⊥x軸,與l交于點(diǎn)N,與x軸交于點(diǎn)H,
又∵直線l與x軸,y軸分別交于點(diǎn)E(-b,0),F(xiàn)(0,b),
∴OE=OF=b,
∴∠NEO=45°,
∴∠ENO1=45°,
∴∠NO1M=45°,
在Rt△O1MN中,O1N=O1M÷sin45°=
∴點(diǎn)N的坐標(biāo)為N(R,+R),(4分)
把點(diǎn)N坐標(biāo)代入y=x+b得:+R=R+b,
解得:b=.(5分)

②如圖,設(shè)經(jīng)過(guò)點(diǎn)O,O1的直線交⊙O1于點(diǎn)A,D,則由已知,直線OO1;
y=x是圓與反比例函數(shù)圖象的對(duì)稱(chēng)軸,當(dāng)反比例函數(shù)y=的圖象與⊙O1直徑AD相交時(shí)(點(diǎn)A,D除外),
則反比例函數(shù)y=的圖象與⊙O1有兩個(gè)點(diǎn).
過(guò)點(diǎn)A作AB⊥x軸交x軸于點(diǎn)B,過(guò)O1作O1C⊥x軸于點(diǎn)C,
OO1=O1C÷sin45°=,OA=+R,
所以O(shè)B=AB=OA•sina45°=(+R)•=R+R,
因此點(diǎn)A的坐標(biāo)是A(R+R,R+R),
將點(diǎn)A坐標(biāo)代入y=,
解得:k=(+)R2;(6分)
同理可求得點(diǎn)D的坐標(biāo)為D(R-R,R-R),
將點(diǎn)D的坐標(biāo)代入y=,解得:k=(-)R2(7分)
所以當(dāng)反比例函數(shù)y=(k>0)的圖象與⊙O1有兩個(gè)交點(diǎn)時(shí),
k的取值范圍是:(-)R2<k<()R2.(8分)
點(diǎn)評(píng):本題考查:(1)直徑是圓中最長(zhǎng)的弦,其它任意弦都小于或等于圓的直徑;
(2)一次函數(shù)圖象的性質(zhì)和反比例函數(shù)圖象的性質(zhì),結(jié)合圓的特點(diǎn)直線的k等于1時(shí)與x軸的夾角等于45°是解本題的關(guān)鍵,也是解決本題的突破口.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2010年廣東省茂名市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•茂名)已知⊙O1的半徑為R,周長(zhǎng)為C.
(1)在⊙O1內(nèi)任意作三條弦,其長(zhǎng)分別是l1l2l3,求證:l1+l2+l3<C;
(2)如圖,在直角坐標(biāo)系xOy中,設(shè)⊙O1的圓心為O1(R,R).
①當(dāng)直線l:y=x+b(b>0)與⊙O1相切時(shí),求b的值;
②當(dāng)反比例函數(shù)y=(k>0)的圖象與⊙O1有兩個(gè)交點(diǎn)時(shí),求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《一元二次方程》(04)(解析版) 題型:解答題

(2010•茂名)已知關(guān)于x的一元二次方程x2-6x-k2=0(k為常數(shù)).
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)x1,x2為方程的兩個(gè)實(shí)數(shù)根,且x1+2x2=14,試求出方程的兩個(gè)實(shí)數(shù)根和k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年全國(guó)中考數(shù)學(xué)試題匯編《二元一次方程組》(02)(解析版) 題型:解答題

(2010•茂名)已知關(guān)于x的一元二次方程x2-6x-k2=0(k為常數(shù)).
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)x1,x2為方程的兩個(gè)實(shí)數(shù)根,且x1+2x2=14,試求出方程的兩個(gè)實(shí)數(shù)根和k的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2010年廣東省茂名市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2010•茂名)已知關(guān)于x的一元二次方程x2-6x-k2=0(k為常數(shù)).
(1)求證:方程有兩個(gè)不相等的實(shí)數(shù)根;
(2)設(shè)x1,x2為方程的兩個(gè)實(shí)數(shù)根,且x1+2x2=14,試求出方程的兩個(gè)實(shí)數(shù)根和k的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案