已知:如圖,∠ACB=90°,AC=BC , AD = BE, ∠CAD=∠CBE ,

【小題1】(1)判斷△DCE的形狀,并說明你的理由;
【小題2】(2)當(dāng)BD:CD=1:2時,∠BDC=135°時,求sin∠BED的值.



【小題1】(1)∵ AC=BC , AD = BE, ∠CAD=∠CBE ,
∴ △ADC≌△BEC……………………………………..1分
DC=EC,∠1=∠2. ……………………………………2分
∵ ∠1+∠BCD=90°,
∴ ∠2+∠BCD=90°.
所以 △DCE是等腰直角三角形
【小題2】(2) ∵ △DCE是等腰直角三角形.
∴ ∠CDE=45°.
∵ ∠BDC=135°,
∴ ∠BDE=90°……………………………………………………………………………….4分
BD:CD=1:2,
設(shè)BD=x,則CD=2x,DE=,BE=3x.

解析

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

14、已知:如圖,∠ACB=∠DBC,要使△ABC≌△DCB,只需增加的一個條件是
∠A=∠D或∠ABC=∠DCB或BD=AC
(只需填寫一個你認(rèn)為適合的條件).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,∠ACB=90°,以AC為直徑的⊙O交AB于D點,過D作⊙O的切線交BC于E點,EF⊥AB于F點,連OE交DC于P,則下列結(jié)論,其中正確的有( 。
①BC=2DE;     ②OE∥AB;   ③DE=
2
PD;    ④AC•DF=DE•CD.
A、①②③B、①③④
C、①②④D、①②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

36、已知:如圖,∠ACB=90°,D、E是AB上的兩點,且AE=AC,BD=BC,EF⊥CD于F,
求證:CF=EF.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,△ACB和△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點D在AB上.
求證:BD=AE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,∠ACB=90°,AC=BC,AD=BE,∠CAD=∠CBE.
(1)判斷△DCE的形狀,并說明你的理由;
(2)當(dāng)BD:CD=1:2時,∠BDC=135°時,求sin∠BED的值.

查看答案和解析>>

同步練習(xí)冊答案