【題目】如圖,在△ABC中,已知∠BDC=∠EFD,∠AED=∠ACB.
(1)試判斷∠DEF與∠B的大小關系,并說明理由;
(2)若D、E、F分別是AB、AC、CD邊上的中點,S△DEF=4,求S△ABC.
【答案】(1)∠DEF=∠B; (2)S△ABC=32.
【解析】
(1)由∠BDC=∠DFE,根據平行線的判定得AB∥EF,則∠ADE=∠DEF,而∠DEF=∠B,所以∠ADE=∠B,由∠AED=∠ACB可判斷DE∥BC,然后根據平行線的性質得到∠ADE=∠B;故∠DEF=∠B
(2)D、E、F分別是AB、AC、CD邊上的中點,根據三角形面積公式得到S△EDC =2S△DEF,S△ADC =2S△DEC,S△ABC =2S△ADC,可得S△ABC=8S△DEF進行計算即可.
(1)結論:∠DEF=∠B
證明:∵∠BDC=∠DFE,
∴AB∥EF,
∴∠ADE=∠DEF,
∵∠DEF=∠B,
∴∠AED=∠C,
∴DE∥BC,
∴∠ADE=∠B,
∴∠DEF=∠B;
(2)解:∵F為CD的中點,
∴S△DEC =2S△DEF,
同理可得:S△ADC =2S△DEC,S△ABC =2S△ADC,
∵S△DEF=4
∴S△ABC=8S△DEF=8×4=32,
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCD的四個角向內翻折后,恰好拼成一個無縫隙無重合的四邊形EFGH,EH=12cm,EF=l6cm則邊AD的長是( )
A.12cmB.16cmC.20cmD.24cm
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,△ABC三個頂點的坐標分別為:A(1,﹣4),B(5,﹣4),C(4,﹣1).
(1)將△ABC經過平移得到△A1B1C1,若點C的應點C1的坐標為(2,5),則點A,B的對應點A1,B1的坐標分別為 ;
(2)在如圖的坐標系中畫出△A1B1C1,并畫出與△A1B1C1關于原點O成中心對稱的△A2B2C2.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線與x軸交于A(x1,0)、B(x2,0)兩點,且x1<x2與y軸交于點C(0,4),其中x1,x2是方程x2﹣4x﹣12=0的兩個根.
(1)求拋物線的解析式;
(2)點M是線段AB上的一個動點,過點M作MN∥BC,交AC于點N,連結CM,當△CMN的面積最大時,求點M的坐標;
(3)點D(4,k)在(1)中拋物線上,點E為拋物線上一動點,在x軸上是否存在點F,使以A、D、E、F為頂點的四邊形是平行四邊形?如果存在,直接寫出所有滿足條件的點F的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,將矩形ABCD沿GH對折,點C落在Q處,點D落在AB邊上E處,EQ與BC相交于F,若AD=8 cm,AB=6 cm,AE=4cm,則△EBF的周長是______________ cm.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形ABCD的對角線AC,BD相交于點O,且DE∥AC,AE∥BD.
(1)求證:四邊形AODE是矩形.
(2)若AB=5,BD=8,求矩形AODE的周長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,三角形ABC三個頂點的坐標分別為、,,若把三角形ABC向上平移3個單位長度,再向左平移1個單位長度得到三角形A′B′C′,點A、B、C的對應點分別為A′、B′、C′。
(1)寫出點A′、B′、C′的坐標;
(2)在圖中畫出平移后的三角形A′B′C′;
(3)三角形A′B′C′的面積為_____________。
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個三位正整數M,其各位數字均不為零且互不相等.若將M的十位數字與百位數字交換位置,得到一個新的三位數,我們稱這個三位數為M的“友誼數”,如:168的“友誼數”為“618”;若從M的百位數字、十位數字、個位數字中任選兩個組成一個新的兩位數,并將得到的所有兩位數求和,我們稱這個和為M的“團結數”,如:123的“團結數”為12+13+21+23+31+32=132.
(1)求證:M與其“友誼數”的差能被15整除;
(2)若一個三位正整數N,其百位數字為2,十位數字為a、個位數字為b,且各位數字互不相等(a≠0,b≠0),若N的“團結數”與N之差為24,求N的值.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com