【題目】如圖,△ABC是一塊銳角三角形余料,邊BC=120 mm,高AD=80mm,要把它加工成矩形零件PQMN,使矩形PQMN的邊QM在BC上,其余兩個(gè)項(xiàng)點(diǎn)P,N分別在AB,AC上.
(1)當(dāng)矩形的邊PN=PQ時(shí),求此時(shí)矩形零件PQMN的面積;
(2)求這個(gè)矩形零件PQMN面積S的最大值.
【答案】(1)矩形零件PQMN的面積為2304mm2;(2)這個(gè)矩形零件PQMN面積S的最大值是2400mm2.
【解析】
(1)設(shè)PQ=xmm,則AE=AD-ED=80-x,再證明△APN∽△ABC,利用相似比可表示出,根據(jù)正方形的性質(zhì)得到(80-x)=x,求出x的值,然后結(jié)合正方形的面積公式進(jìn)行解答即可.
(2)由(1)可得,求此二次函數(shù)的最大值即可.
解:(1)設(shè)PQ=xmm,
易得四邊形PQDE為矩形,則ED=PQ=x,
∴AE=AD-ED=80-x,
∵PN∥BC,
∴△APN∽△ABC,
,
即,
,
∵PN=PQ,
,
解得x=48.
故正方形零件PQMN面積S=48×48=2304(mm2).
(2)
當(dāng)時(shí),S有最大值==2400(mm2).
所以這個(gè)矩形零件PQMN面積S的最大值是2400mm2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在 ABCD中,CD=2AD,BE⊥AD于點(diǎn)E,F(xiàn)為DC的中點(diǎn),連結(jié)EF、BF,下列結(jié)論:①∠ABC=2∠ABF;②EF=BF;③S四邊形DEBC=2S△EFB;④∠CFE=3∠DEF,其中正確結(jié)論的個(gè)數(shù)共有( ).
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,可以自由轉(zhuǎn)動(dòng)的轉(zhuǎn)盤(pán)被3等分,指針落在每個(gè)扇形內(nèi)的機(jī)會(huì)均等.
(1)現(xiàn)隨機(jī)轉(zhuǎn)動(dòng)轉(zhuǎn)盤(pán)一次,停止后,指針指向1的概率為 ;
(2)小明和小華利用這個(gè)轉(zhuǎn)盤(pán)做游戲,若采用下列游戲規(guī)則,你認(rèn)為對(duì)雙方公平嗎?請(qǐng)用列表或畫(huà)樹(shù)狀圖的方法說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)G在直徑DF的延長(zhǎng)線(xiàn)上,∠D=∠G=30°.
(1)求證:CG是⊙O的切線(xiàn) (2)若CD=6,求GF的長(zhǎng)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,點(diǎn)A在以BC為直徑的半圓內(nèi).請(qǐng)僅用無(wú)刻度的直尺分別按下列要求畫(huà)圖(保留畫(huà)圖痕跡).
(1)在圖1中作弦EF,使EF∥BC;
(2)在圖2中作出圓心O.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB為⊙O直徑,AC為⊙O的弦,過(guò)⊙O外的點(diǎn)D作DE⊥OA于點(diǎn)E,交AC于點(diǎn)F,連接DC并延長(zhǎng)交AB的延長(zhǎng)線(xiàn)于點(diǎn)P,且∠D=2∠A,作CH⊥AB于點(diǎn)H.
(1)判斷直線(xiàn)DC與⊙O的位置關(guān)系,并說(shuō)明理由;
(2)若HB=2,cosD=,請(qǐng)求出AC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形ABCD中,連接AC,點(diǎn)E為正方形ABCD內(nèi)一點(diǎn),∠BAE=∠BCE=15°,點(diǎn)F為AE延長(zhǎng)線(xiàn)上一點(diǎn),且BF=BC,連接CF,下列結(jié)論:①EF平分∠BEC;②△BCF是等邊三角形;③∠AFC=45°;④EF=AE+BE.正確的是( )
A.①②B.②③C.①②③D.①②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)中,正比例函數(shù)的圖象與反比例函數(shù)的圖象經(jīng)過(guò)點(diǎn).
()分別求這兩個(gè)函數(shù)的表達(dá)式.
()將直線(xiàn)向上平移個(gè)單位長(zhǎng)度后與軸交于點(diǎn),與反比例函數(shù)圖象在第四象限內(nèi)的交點(diǎn)為,連接、,求點(diǎn)的坐標(biāo)及的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)的頂點(diǎn)P(m,1)(m>0),與y軸的交點(diǎn)C(0,m2+1).
(1)求拋物線(xiàn)的解析式(用含m的式子表示)
(2)點(diǎn)N(x,y)在該拋物線(xiàn)上,NH⊥直線(xiàn)y=于點(diǎn)H,點(diǎn)M(m,)且∠NMH=60°.
①求證:△MNH是等邊三角形;
②當(dāng)點(diǎn)O、P、N在同一直線(xiàn)上時(shí),求m的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com