解:(1)PC與PD的數(shù)量關(guān)系是相等.
證明:過點(diǎn)P作PH⊥OA,PN⊥OB,垂足分別為點(diǎn)H、N.
∵∠AOB=90°,易得∠HPN=90度.
∴∠1+∠CPN=90°,
而∠2+∠CPN=90°,
∴∠1=∠2.
∵OM是∠AOB的平分線,
∴PH=PN,
又∵∠PHC=∠PND=90°,
∴△PCH≌△PDN;
∴PC=PD.
(2)∵PC=PD,∠CPD=90°,
∴∠3=45°,
∵∠POD=45°,
∴∠3=∠POD.
又∵∠GPD=∠DPO,∴△POD∽△PDG.
∴
.
∵
,
∴
.
(3)如圖1所示,若PR與射線OA相交,則OP=1;
如圖2所示,若PR與直線OA的交點(diǎn)C與點(diǎn)A在點(diǎn)O的兩側(cè),則OP=
-1.
分析:(1)PC與PD的數(shù)量關(guān)系是相等.如圖過點(diǎn)P作PH⊥OA,PN⊥OB,垂足分別為點(diǎn)H、N,根據(jù)OM是∠AOB的平分線可以得到PH=PN,又∠AOB=90°,易得∠HPN=90°,由此得到∠1+∠CPN=90°,最后得到∠1=∠2,現(xiàn)在可以證明△PCH≌△PDN,然后根據(jù)全等三角形的性質(zhì)就可以證明PC=PD;
(2)根據(jù)(1)可以得到∠3=45°,而∠POD=45°,所以△POD∽△PDG,然后根據(jù)相似三角形的性質(zhì)和已知條件就可以求出GD:OD的值;
(3)有兩種情況.
①如圖1所示,若PR與射線OA相交,根據(jù)以P、D、E為頂點(diǎn)的三角形與△OCD相似可以得到∠CEO=∠CDO,從而CE=CD,而OC⊥DE,所以O(shè)E=OD,而∠EPD=90°,則OP=1;
②如圖2所示,若PR與直線OA的交點(diǎn)C與點(diǎn)A在點(diǎn)O的兩側(cè),過P作PH⊥OA,PN⊥OB,垂足分別為H,N,∵∠PDE>∠EDC,可以證明△PDE∽△ODC,由此得到∠PDE=∠ODC.
∵∠OEC>∠PED,∴∠PDE=∠HCP;而PH=PN,
∴Rt△PHC≌Rt△PND,
∴HC=ND,PC=PD,∴∠PDC=∠PCD=45°,
∴∠PDO=22.5°,
根據(jù)外角的性質(zhì)可得:∠PED=∠PDO+∠PCD=67.5°,即∠POE+∠OPE=67.5°,
又∠POE=45°,∴∠QPE=22.5°,
∴∠PDO=∠OPE,
∵以P、D、E為頂點(diǎn)的三角形與△OCD相似,
∴∠PDO=∠OCE,
∴∠OPE=∠OCE,
∴OP=OC.
設(shè)OP=x,則OH=ON=
x,HC=DN=OD-ON=1-
x;
而HC=HO+OC=
x+x,即1-
x=
x+x,
從而可得OP=
-1.
點(diǎn)評(píng):此題綜合性比較強(qiáng),把直角三角形的性質(zhì),相似三角形的判定與性質(zhì),全等三角形的判定與性質(zhì)都結(jié)合起來,利用它們探究圖形變換的規(guī)律.