作业宝如圖,等腰三角形ABC,AB=AC,以AB為直徑作圓O分別交AC、BC于D、E兩點,過B點的切線交OE的延長線于點F,連接FD,下列結(jié)論:①數(shù)學公式,②FD是⊙O的切線;③∠C=∠DFB;④E是△BDF的內(nèi)心.
其中一定正確的結(jié)論是


  1. A.
    ①②③
  2. B.
    ①②④
  3. C.
    ①③④
  4. D.
    ②③④
B
分析:首先利用三角形的中位線定理證明OE∥AC,然后證得∠BOE=∠EOD可得:①,再證明△FDO≌△FBO,可以得到DF是圓的切線;利用等腰三角形的性質(zhì):等邊對等角即可判斷③的正誤;然后根據(jù)角相等證明E在∠FAB和∠FBD的角平分線上和E在∠FBD的平分線上,利用內(nèi)心的定義可得到④的正誤.
解答:連接AE,DO,
∵AB是直徑,
∴∠AEB=90°,
∴AE⊥BC,
又∵AB=AC,
∴BE=CE,
又∵OA=OB,
∴OE∥AC,
∴∠BOE=∠BAC,∠EOD=∠ADO,
∵∠BAC=∠ADO,
∴∠BOE=∠EOD,
,
故①正確;
在△FDO和△FBO中,
,
∴△FDO≌△FBO(SAS),
∴∠ODF=∠OBF=90°,
即△FDO是直角三角形,DF是⊙O的切線.
故②正確;
設(shè)∠C=x°,則∠CAB=(180-2x)°,
則在直角△ABD中,∠ABD=90°-(180-2x)°=(2x-90)°,
∵BF是切線,則∠ABF=90°,
∴∠DBF=90°-∠ABD=90°-(2x-90)°=(180-2x)°,
在等腰△BDF中,∠DFB=180°-2∠DBF=180°-2(180-2x)°=(4x-180)°,
而4x-180與x不一定相等,故③不正確.
連接DE,DB,
∵FD、FB是圓的切線,
∴FD=FB,
又∵OB=OD
∴OF是BD的中垂線,
∴E在∠FBD的平分線上,
,
∴∠FBE=∠CBD,∠FDE=∠DEB,
∴E在∠FDB和∠FBD的角平分線上,
∴E是△BFD的內(nèi)心,故④正確.
故選:B.
點評:此題主要考查了三角形的內(nèi)心、外心以及切線的判定,解答的關(guān)鍵是正確證得DF是圓的切線.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

9、如圖,等腰三角形ABC中,AB=AC,∠A=44°,CD⊥AB于D,則∠DCB等于( 。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,等腰三角形ABC的頂角為120°,底邊BC=
3
2
,則腰長AB為( 。
A、
2
2
B、
3
2
C、
1
2
D、
3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰三角形與正三角形的形狀有著差異,我們把它與正三角形的接近程度稱為等腰三角形的“正度”,在研究“正度”時,應(yīng)符合下面四個條件:①“正度”的值是非負數(shù);②“正度”值越小,表示等腰三角形越接近正三角形;③相似的等腰三角形“正度”要相等;④正三角形的“正度”是0.例如:
設(shè)等腰三角形的底和腰分別為a,b,底角和頂角分別為α,β.
可用|sinα-
3
2
|
表示等腰三角形的“正度”,|sinα-
3
2
|
的值越小,α越接近60°,表示等腰三角形越接近正三角形,且當兩個等腰三角形相似時,它們的底角相等,顯然,它們的“正度”|sinα-
3
2
|
也相等,當α=60°時,|sinα-
3
2
|=0

而如果用
a
b
表示等腰三角形的“正度”,就不符合要求,因為此時正三角形的正度是1!
解答下列問題:
甲同學認為:可用|a-b|表示等腰三角形的“正度”,|a-b|的值越小,表示等腰三角形越接近正三角形;
乙同學認為:可用|α-β|表示等腰三角形的“正度”,|α-β|的值越小,表示等腰三角形越接近正三角形.
精英家教網(wǎng)(1)他們的說法合理嗎?為什么?
(2)對你認為不合理的方案加以改進,使其合理;
(3)請你再給出一種衡量等腰三角形“正度”的合理的表達式,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,等腰三角形ABC中,AB=AC,AH垂直BC,點E是AH上一點,延長AH至點F,使FH=EH,
(1)求證:四邊形EBFC是菱形;
(2)如果∠BAC=∠ECF,求證:AC⊥CF.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,等腰三角形ABC(AB=AC)的底角為50°,繞點A逆時針旋轉(zhuǎn)一定角度后得△AB′C′,那么△AB′C′繞點A旋轉(zhuǎn)
40
40
度后AC⊥B′C′.

查看答案和解析>>

同步練習冊答案