如圖,已知銳角△ABC中,CD、BE分別是AB、AC邊上的高,M、N分別是線段BC、DE的中點.
(1)求證:MN⊥DE;
(2)連結DM,ME,猜想∠A與∠DME之間的關系,并寫出推理過程;
(3)若將銳角△ABC變?yōu)殁g角△ABC,如圖,上述(1)(2)中的結論是否都成立?若結論成立,直接回答,不需證明;若結論不成立,說明理由.
分析:(1)連接DM、ME,根據(jù)直角三角形斜邊上的中線等于斜邊的一半可得DM=
1
2
BC,ME=
1
2
BC,從而得到DM=ME,再根據(jù)等腰三角形三線合一的性質證明;
(2)根據(jù)三角形的內角和定理可得∠ABC+∠ACB=180°-∠A,再根據(jù)等腰三角形兩底角相等表示出∠BMD+∠CME,然后根據(jù)平角等于180°表示出∠DME,整理即可得解;
(3)根據(jù)三角形的內角和定理可得∠ABC+∠ACB=180°-∠A,再根據(jù)等腰三角形兩底角相等和三角形的一個外角等于與它不相鄰的兩個內角的和表示出∠BME+∠CME,然后根據(jù)平角等于180°表示出∠DME,整理即可得解.
解答:解:(1)如圖,連接DM,ME,
∵CD、BE分別是AB、AC邊上的高,M是BC的中點,
∴DM=
1
2
BC,ME=
1
2
BC,
∴DM=ME
又∵N為DE中點,
∴MN⊥DE;

(2)在△ABC中,∠ABC+∠ACB=180°-∠A,
∵DM=ME=BM=MC,
∴∠BMD+∠CME=(180°-2∠ABC)+(180°-2∠ACB),
=360°-2(∠ABC+∠ACB),
=360°-2(180°-∠A),
=2∠A,
∴∠DME=180°-2∠A;

(3)結論(1)成立,
結論(2)不成立,
理由如下:在△ABC中,∠ABC+∠ACB=180°-∠A,
∵DM=ME=BM=MC,
∴∠BME+∠CMD=2∠ACB+2∠ABC,
=2(180°-∠A),
=360°-2∠A,
∴∠DME=180°-(360°-2∠A),
=2∠A-180°.
點評:本題考查了直角三角形斜邊上的中線等于斜邊的一半的性質,等腰三角形兩底角相等的性質,三角形的內角和定理,整體思想的利用是解題的關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

如圖,已知銳角△ABC的邊BC的長為6,面積為12,PQ∥BC,點P在AB上,點Q在AC上,四邊形RPQS為正方形(RS與A在PQ的異側),其邊長為x,正方形RPQS與△ABC的公共面積為y.
(1)當正方形RPQS的邊RS恰好落在BC上時,求邊長x.
精英家教網 精英家教網
(2)當RS不落在BC上時,求y關于x的函數(shù)關系式以及自變量x的取值范圍.(可以將圖形畫在備用的圖形中)
精英家教網
(3)求y的最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•裕華區(qū)二模)如圖①,將兩個等腰直角三角形疊放在一起,使上面三角板的一個銳角頂點與下面三角板的直角頂點重合,并將上面的三角板繞著這個頂點逆時針旋轉,在旋轉過程中,當下面三角板的斜邊被分成三條線段時,我們來研究這三條線段之間的關系.
(1)實驗與操作:
如圖②,如果上面三角板的一條直角邊旋轉到CM的位置時,它的斜邊恰好旋轉到CN的位置,請在網格中分別畫出以AM、MN和NB為邊長的正方形,觀察這三個正方形的面積之間的關系;
(2)猜想與探究:
如圖③,在Rt△ABC中,BC=AC,∠ACB=90°,M、N是AB邊上的點,∠MCN=45°,作DA⊥AB于點A,截取DA=NB,并連接DC、DM.
我們來證明線段CD與線段CN相等.
∵∠CAB=∠CBA=45°,又DA⊥AB于點A,
∴∠DAC=45°,∴∠DAC=∠CBA,
又∵DA=NB,BC=AC,
∴△CAD≌△CBN.
∴CD=CN.

請你繼續(xù)解答:
①線段MD與線段MN相等嗎?為什么?
②線段AM、MN、NB有怎樣的數(shù)量關系,為什么?
(3)拓廣與運用:
如圖④,已知線段AB上任意一點M(AM<MB),是否總能在線段MB上找到一點N,使得分別以AM與BN為邊長的正方形的面積的和等于以MN為邊長的正方形的面積?若能,請在圖④中畫出點N的位置,并簡要說明作法;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知直線AB和CD相交于點O(∠AOC為銳角)
(1)寫出∠AOC和∠BOD的大小關系
∠AOC=∠BOD
∠AOC=∠BOD
;判斷的依據(jù)是
對頂角相等
對頂角相等

(2)過點O作射線OE、OF,若∠COE=90°,OF平分∠AOE,畫出圖形并求∠AOF+∠COF的度數(shù),說明你的理由.
(3)在(2)的條件下,若∠AOD=120°,請計算∠COF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:解答題

如圖,已知直線AB和CD相交于點O(∠AOC為銳角)
(1)寫出∠AOC和∠BOD的大小關系______;判斷的依據(jù)是______.
(2)過點O作射線OE、OF,若∠COE=90°,OF平分∠AOE,畫出圖形并求∠AOF+∠COF的度數(shù),說明你的理由.
(3)在(2)的條件下,若∠AOD=120°,請計算∠COF的度數(shù).

查看答案和解析>>

同步練習冊答案