精英家教網(wǎng)如圖,△ABC是等邊三角形,AE=CD,AD、BE相交于點P,BQ⊥DA于Q,∠BPQ的度數(shù)是
 
;若PQ=3,EP=1,則DA的長是
 
分析:根據(jù)等邊三角形的性質(zhì),通過全等三角形的判定定理SAS證出△AEB≌△CDA,利用全等三角形的對應角相等和三角形外角的性質(zhì)求得∠BPQ=60°,求得∠PBQ=30°,所以由“30度角所對的直角邊是斜邊的一半”得到2PQ=BP=6,則易求BE=BP+PE=7.
解答:解:∵△ABC為等邊三角形,
∴AB=CA,∠BAE=∠C=60°,
∴在△AEB與△CDA中
AB=AC
∠BAE=∠C
A=CD
,
∴△AEB≌△CDA(SAS);
∴∠ABE=∠CAD,
∴∠BAD+∠ABD=∠BAD+∠CAD=∠BAC=60°,
∴∠BPQ=∠BAD+∠ABD=60°,
∵BQ⊥AD,
∴∠PBQ=30°,
∴PQ=
1
2
BP=3,
∴BP=6,
∵EP=1,
∴BE=BP+PE=7,
故答案為:60°,7.
點評:本題考查了全等三角形的判定與性質(zhì)、含30度角的直角三角形的應用,全等三角形的判定是結(jié)合全等三角形的性質(zhì)證明線段和角相等的重要工具.在判定三角形全等時,關(guān)鍵是選擇恰當?shù)呐卸l件.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,⊙O過點B,C,且與BA,CA的延長線分別交于點D,E,弦DF精英家教網(wǎng)∥AC,EF的延長線交BC的延長線于點G.
(1)求證:△BEF是等邊三角形;
(2)若BA=4,CG=2,求BF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

9、如圖,△ABC是等邊三角形,過AB邊上一點D作BC的平行線交AC于E,則△ADE的三個內(nèi)角
等于60度.(填“都”、“不都”或“都不”)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖,△ABC是等邊三角形,AB=4cm,則BC邊上的高AD等于
 
cm.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,D為BC邊上的點,∠BAD=15°,將△ABD繞點A點逆時針方向旋轉(zhuǎn)后到達△ACE的位置,那么旋轉(zhuǎn)角的度數(shù)是
60°
60°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,△ABC是等邊三角形,CE是外角平分線,點D在AC上,連結(jié)BD并延長與CE交于點E.
(1)直接寫出∠ECF的度數(shù)等于
60
60
°;
(2)求證:△ABD∽△CED;
(3)若AB=12,AD=2CD,求BE的長.

查看答案和解析>>

同步練習冊答案