(2011•葫蘆島)某開發(fā)商要建一批住房,經(jīng)調(diào)查了解,若甲、乙兩隊分別單獨完成,則乙隊完成的天數(shù)是甲隊的1.5倍;若甲、乙兩隊合作,則需120天完成.
(1)甲、乙兩隊單獨完成各需多少天?
(2)施工過程中,開發(fā)商派兩名工程師全程監(jiān)督,需支付每人每天食宿費150元.已知乙隊單獨施工,開發(fā)商每天需支付施工費為10 000元.現(xiàn)從甲、乙兩隊中選一隊單獨施工,若要使開發(fā)商選甲隊支付的總費用不超過選乙隊的,則甲隊每天的施工費最多為多少元?總費用=施工費+工程師食宿費.
分析:(1)假設甲隊單獨完成需x天,則乙隊單獨完成需1.5x天,根據(jù)總工作量為1得出等式方程求出即可;
(2)分別表示出甲、乙兩隊單獨施工所需費用,得出不等式,求出即可.
解答:(1)設甲隊單獨完成需x天,則乙隊單獨完成需1.5x天.根據(jù)題意,得
120
x
+
120
1.5x
=1.
解得x=200.
經(jīng)檢驗,x=200是原分式方程的解.
答:甲隊單獨完成需200天,乙隊單獨完成需300天.

(2)設甲隊每天的施工費為y元.根據(jù)題意,得
200y+200×150×2≤300×10 000+300×150×2,
解得y≤15150.
答:甲隊每天施工費最多為15150元.
點評:此題主要考查了分式方程的應用,根據(jù)已知利用總工作量為1得出等式方程是解題關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

(2011•葫蘆島)如圖(1)至圖(2),在△ABC和△ADE中,∠BAC=∠DAE=90°,點B、C、E在同一條直線上.
(1)已知:如圖(1),AC=AB,AD=AE.求證:①CD=BE;②CD⊥BE.
(2)如圖(2),當AB=kAC,AE=kAD(k≠1)時,分別說出(1)中的兩個
結論是否成立,若成立,請給予證明;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•葫蘆島)如圖,有一直徑MN=4的半圓形紙片,其圓心為點P,從初始位置Ⅰ開始,在無滑動的情況下沿數(shù)軸向右翻滾至位置Ⅴ,其中,位置Ⅰ中的MN平行于數(shù)軸,且半⊙P與數(shù)軸相切于原點O;位置Ⅱ和位置Ⅳ中的MN垂直于數(shù)軸;位置Ⅲ中的MN在數(shù)軸上;位置Ⅴ中的點N到數(shù)軸的距離為3,且半⊙P與數(shù)軸相切于點A.
解答下列問題:
(1)位置Ⅰ中的MN與數(shù)軸之間的距離為
2
2
;位置Ⅱ中的半⊙P與數(shù)軸的位置關系是
相切
相切
;
(2)求位置Ⅲ中的圓心P在數(shù)軸上表示的數(shù);
(3)紙片半⊙P從位置Ⅲ翻滾到位置Ⅳ時,求點N所經(jīng)過路徑長及該紙片所掃過圖形的面積;
(4)求OA的長.
[(2),(3),(4)中的結果保留π].

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•葫蘆島一模)(1)已知x=-2,求(1-
1
x
x2-2x+1
x
的值.
(2)解方程:
1-x
x-2
+2=
1
x-2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•葫蘆島一模)如圖,在矩形ABCD中,AD=8,AB=6,點M是BC的中點,點P從點M出發(fā)沿MB以每秒1個單位長的速度向點B勻速運動,到達點B后立刻以原速度沿BM返回;點Q從點M出發(fā)以每秒1個單位長的速度在射線MC上勻速運動,在點P,Q的運動過程中,以PQ為邊作正方形PQEF,使它與矩形ABCD在BC的同側,點P,Q同時出發(fā),當點P返回點M時停止運動,點Q也隨之停止,設點P,Q運動的時間是t秒(t>0)
(1)用含t的代數(shù)式表示線段BQ的長;
(2)設正方形PQEF與矩形ABCD重疊部分的面積為S,求S與t之間的函數(shù)關系式;
(3)連接AC,當正方形PQEF與△ADC重疊部分為三角形時,直接寫出t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2011•葫蘆島)根據(jù)圖所示的程序計算,若輸入x的值為64,則輸出結果為
-
5
2
-
5
2

查看答案和解析>>

同步練習冊答案