由方程3x+4y=5變形,用含y的代數(shù)式表示,則x=
5-4y
3
5-4y
3
分析:將y看做已知數(shù),求出x即可.
解答:解:3x+4y=5,
解得:x=
5-4y
3

故答案為:
5-4y
3
點(diǎn)評(píng):此題考查了解二元一次方程,解題的關(guān)鍵是將x看做未知數(shù),y看做已知數(shù).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:閱讀理解

先閱讀下列材料,然后解答問(wèn)題
若關(guān)于x的方程:mx-3=3x+5解是正整數(shù),求m的整數(shù)值.
解:由方程:mx-3=3x+5得:
mx+3x=5+3
即:(m+3)x=8
∵x是正整數(shù),m是整數(shù)
∴m+3是8的正整數(shù)約數(shù)
∴m+3=1或m+3=2或m+3=4或m+3=8
∴m=-2或m=-1或m=1或m=5

試仿照上面的解法,回答下面的問(wèn)題:
若關(guān)于y的方程:ny+y+5=-4y+12解是正整數(shù),求n的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:中學(xué)學(xué)習(xí)一本通 數(shù)學(xué) 七年級(jí)下冊(cè) 人教課標(biāo) 題型:044

  我們知道,含有兩個(gè)未知數(shù)的一個(gè)方程,一般情況下有無(wú)窮多個(gè)解.有時(shí)為了需要,要求出方程的整數(shù)解,如何將這些解一一寫出呢?可以試用下面的一種簡(jiǎn)單辦法.例如,求方程3x+95y=1306的整數(shù)解.

  解:由原方程得,x=.  、

  因?yàn)閤,y為整數(shù),=435-32y+,故y=3k+2.(k為整數(shù)) ②

  把②代入①,得x=372—95k,因此(k為整數(shù))

  又如求方程68x-9y=102的整數(shù)解.

  解:由原方程得y=. 、

  因?yàn)閤,y為整數(shù),而-102被9除余-3,又68x=63x+5x,故5x被9除余3,x=9k+6.(k為整數(shù))    、

  把②代入①,得y=68k+34,因此(k為整數(shù))

  注意:對(duì)于二元一次不定方程ax±by=c(a,b是互質(zhì)的正整數(shù),c是整數(shù)),當(dāng)a,b中有一個(gè)較小時(shí),可從考慮余數(shù)著手,求得其整數(shù)解.

  下面,請(qǐng)你應(yīng)用上述方法解兩個(gè)問(wèn)題:

(1)

求方程3x-5y=6的整數(shù)解

(2)

求方程3x-4y=25的整數(shù)解

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

由方程3x+4y=5變形,用含y的代數(shù)式表示,則x=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

先閱讀下列材料,然后解答問(wèn)題
若關(guān)于x的方程:mx-3=3x+5解是正整數(shù),求m的整數(shù)值.
由方程:mx-3=3x+5得:
mx+3x=5+3
即:(m+3)x=8
∵x是正整數(shù),m是整數(shù)
∴m+3是8的正整數(shù)約數(shù)
∴m+3=1或m+3=2或m+3=4或m+3=8
∴m=-2或m=-1或m=1或m=5

試仿照上面的解法,回答下面的問(wèn)題:
若關(guān)于y的方程:ny+y+5=-4y+12解是正整數(shù),求n的整數(shù)值.

查看答案和解析>>

同步練習(xí)冊(cè)答案