【題目】如圖,小明為了測量一涼亭的高度AB(頂端A到水平地面BD的距離),在涼亭的旁邊放置一個(gè)與涼亭臺(tái)階BC等高的臺(tái)階DE(DE=BC=0.5米,A、B、C三點(diǎn)共線),把一面鏡子水平放置在平臺(tái)上的點(diǎn)G處,測得CG=15米,然后沿直線CG后退到點(diǎn)E處,這時(shí)恰好在鏡子里看到?jīng)鐾さ捻敹薃,測得EG=3米,小明身高1.6米,則涼亭的高度AB約為(
A.8.5米
B.9米
C.9.5米
D.10米

【答案】A
【解析】解:由題意∠AGC=∠FGE,∵∠ACG=∠FEG=90°, ∴△ACG∽△FEG,
= ,
= ,
∴AC=8,
∴AB=AC+BC=8+0.5=8.5米.
故選A.

【考點(diǎn)精析】認(rèn)真審題,首先需要了解相似三角形的應(yīng)用(測高:測量不能到達(dá)頂部的物體的高度,通常用“在同一時(shí)刻物高與影長成比例”的原理解決;測距:測量不能到達(dá)兩點(diǎn)間的舉例,常構(gòu)造相似三角形求解).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在梯形ABCD中,AD∥BC,AD=3,BC=2,點(diǎn)E、F分別在兩腰上, 且EF∥AD,AE:EB=2:1;

(1)求線段EF的長;
(2)設(shè) = , = ,試用 、 表示向量

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,某校綜合實(shí)踐活動(dòng)小組的同學(xué)欲測量公園內(nèi)一棵樹DE的高度,他們在這棵樹正前方一座樓亭前的臺(tái)階上A點(diǎn)處測得樹頂端D的仰角為30°,朝著這棵樹的方向走到臺(tái)階下的點(diǎn)C處,測得樹頂端D的仰角為60°.已知A點(diǎn)的高度AB為2m,臺(tái)階AC的傾斜角∠ACB為30°,且B、C、E三點(diǎn)在同一條直線上.請根據(jù)以上條件求出樹DE的高度(測傾器的高度忽略不計(jì)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,在平行四邊形ABCD中,AE平分∠BAD,交BC于點(diǎn)E,BF平分∠ABC,交AD于點(diǎn)F,AE與BF交于點(diǎn)P,連接EF,PD.
(1)求證:四邊形ABEF是菱形.
(2)若AB=4,AD=6,∠ABC=60°,求tan∠ADP的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】“元旦”期間,某商場為了吸引顧客購物消費(fèi),設(shè)計(jì)了如圖所示的一個(gè)轉(zhuǎn)盤,轉(zhuǎn)盤平均分成3份.
(1)求轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次所得的顏色是黃色的概率;
(2)請用列表法或畫樹狀圖的方法來說明轉(zhuǎn)動(dòng)該轉(zhuǎn)盤兩次,兩次所得的顏色相同的概率.
(3)該商場設(shè)計(jì)了如下兩種獎(jiǎng)勵(lì)方案:方案一,轉(zhuǎn)動(dòng)該轉(zhuǎn)盤一次,若轉(zhuǎn)得的顏色是黃色則可得獎(jiǎng);方案二,轉(zhuǎn)動(dòng)該轉(zhuǎn)盤兩次,若兩次轉(zhuǎn)得的顏色相同則可得獎(jiǎng)。如果你是顧客,你選擇哪種方案比較劃算?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在數(shù)學(xué)課本上,同學(xué)們已經(jīng)探究過“經(jīng)過已知直線外一點(diǎn)作這條直線的垂線“的尺規(guī)作圖過程:
已知:直線l和l外一點(diǎn)P

求作:直線l的垂線,使它經(jīng)過點(diǎn)P.
作法:如圖:⑴在直線l上任取兩點(diǎn)A、B;
⑵分別以點(diǎn)A、B為圓心,AP,BP長為半徑畫弧,兩弧相交于點(diǎn)Q;
⑶作直線PQ.
參考以上材料作圖的方法,解決以下問題:
(1)以上材料作圖的依據(jù)是:
(2)已知,直線l和l外一點(diǎn)P,
求作:⊙P,使它與直線l相切.(尺規(guī)作圖,不寫作法,保留作圖痕跡,并把作圖痕跡用黑色簽字筆描黑)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形ABCD和正方形EFCG的邊長分別為3和1,點(diǎn)F,G分別在邊BC,CD上,P為AE的中點(diǎn),連接PG,則PG的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)反比例函數(shù)的解析式為y= (k>0).
(1)若該反比例函數(shù)與正比例函數(shù)y=2x的圖象有一個(gè)交點(diǎn)的縱坐標(biāo)為2,求k的值;
(2)若該反比例函數(shù)與過點(diǎn)M(﹣2,0)的直線l:y=kx+b的圖象交于A,B兩點(diǎn),如圖所示,當(dāng)△ABO的面積為 時(shí),求直線l的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1所示,E為矩形ABCD的邊AD上一點(diǎn),動(dòng)點(diǎn)P、Q同時(shí)從點(diǎn)B出發(fā),點(diǎn)P以1cm/秒的速度沿折線BE﹣ED﹣DC運(yùn)動(dòng)到點(diǎn)C時(shí)停止,點(diǎn)Q以2cm/秒的速度沿BC運(yùn)動(dòng)到點(diǎn)C時(shí)停止.設(shè)P、Q同時(shí)出發(fā)t秒時(shí),△BPQ的面積為ycm2 . 已知y與t的函數(shù)關(guān)系圖象如圖2;(其中曲線OG為拋物線的一部分,其余各部分均為線段),則下列結(jié)論:
①當(dāng)0<t≤5時(shí),y= t2;②當(dāng)t=6秒時(shí),△ABE≌△PQB;③cos∠CBE= ;④當(dāng)t= 秒時(shí),△ABE∽△QBP;
其中正確的是( )

A.①②
B.①③④
C.③④
D.①②④

查看答案和解析>>

同步練習(xí)冊答案