14、關(guān)于x的方程mx2+mx+5=m有兩個(gè)相等的實(shí)數(shù)根,則相應(yīng)二次函數(shù)y=mx2+mx+5-m與x軸必然相交于
點(diǎn),此時(shí)m=
4
分析:當(dāng)二次函數(shù)與x軸有兩個(gè)交點(diǎn)時(shí),b2-4ac>0,與x軸有一個(gè)交點(diǎn)時(shí),b2-4ac=0,與x軸沒(méi)有交點(diǎn)時(shí),b2-4ac<0.
解答:解:因?yàn)殛P(guān)于x的方程mx2+mx+5=m有兩個(gè)相等的實(shí)數(shù)根,所以關(guān)于x的方程mx2+mx+5-m=0有兩個(gè)相等的實(shí)數(shù)根,所以二次函數(shù)y=mx2+mx+5-m與x軸必然相交于一點(diǎn);
此時(shí)b2-4ac=m2-4m(5-m)=0,解得:m=0或m=4.因?yàn)槎雾?xiàng)系數(shù)m≠0,所以m=4.
點(diǎn)評(píng):此題考查了二次函數(shù)與一元二次方程之間的關(guān)系.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的方程mx2-14x-7=0有兩個(gè)實(shí)數(shù)根x1,x2,和關(guān)于y的方程y2-2(n+1)y+n2+2n=0有兩個(gè)實(shí)數(shù)根y1和y2,且-2≤y1<y2≤4
①用含m的代數(shù)式
2
x1+x2
-
6
x1x2
;
②用含n的代數(shù)式表示2(2y1-y22)+14,并求n的取值范圍;
③當(dāng)
2
x1+x2
-
6
x1x2
=2(2y1-y22)+14時(shí),求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

關(guān)于x的方程mx2+3x+1=0有兩個(gè)實(shí)數(shù)根,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

17、關(guān)于x的方程mx2+x-2m=0( m為常數(shù))的實(shí)數(shù)根的個(gè)數(shù)有(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知:關(guān)于x的方程①x2-(m+2)x+m-2=0有兩個(gè)符號(hào)不同的實(shí)數(shù)根x1,x2,且x1>|x2|>0;關(guān)于x的方程②mx2+(n-2)x+m2-3=0有兩個(gè)有理數(shù)根且兩根之積等于2.求整數(shù)n的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

已知關(guān)于x的方程mx2-(3m-1)x+2m-2=0.
(1)求證:無(wú)論m取任何實(shí)數(shù)時(shí),方程恒有實(shí)數(shù)根;
(2)若m為整數(shù),且拋物線(xiàn)y=mx2-(3m-1)x+2m-2與x軸兩交點(diǎn)間的距離為2,求拋物線(xiàn)的解析式;
(3)若直線(xiàn)y=x+b與(2)中的拋物線(xiàn)沒(méi)有交點(diǎn),求b的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案