(2010•防城港)在數(shù)軸上,點A所表示的實數(shù)是-2,⊙A的半徑為2,⊙B的半徑為1,若⊙B與⊙A外切,則在數(shù)軸上點B所表示的實數(shù)是( )
A.1
B.-5
C.1或-5
D.-1或-3
【答案】分析:本題直接告訴了兩圓的半徑及位置關系,根據(jù)數(shù)量關系與兩圓位置關系的對應情況便可直接得出答案.外離,則P>R+r;外切,則P=R+r;相交,則R-r<P<R+r;內切,則P=R-r;內含,則P<R-r.(P表示圓心距,R,r分別表示兩圓的半徑).
解答:解:設數(shù)軸上點B所表示的實數(shù)是b,
則AB=||b-(-2)|=|b+2|,
⊙B與⊙A外切時,AB=2+1,即|b+2|=3,
解得b=1或-5,故選C.
點評:本題考查了由數(shù)量關系及兩圓位置關系求圓心坐標的方法.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《二次函數(shù)》(09)(解析版) 題型:解答題

(2010•防城港)已知:拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于C點,且A(-1,0),點B在x軸的正半軸上,OC=3OA(O為坐標原點).
(1)求拋物線的解析式;
(2)若點E是拋物線上的一個動點且在x軸下方和拋物線對稱軸的左側,過E作EF∥x軸交拋物線于另一點F,作ED⊥x軸于點D,F(xiàn)G⊥x軸于點G,求四邊形DEFG周長m的最大值;
(3)設拋物線頂點為P,當四邊形DEFG周長m取得最大值時,以EF為邊的平行四邊形面積是△AEP面積的2倍,另兩頂點鐘有一頂點Q在拋物線上,求Q點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣西玉林市中考數(shù)學試卷(解析版) 題型:解答題

(2010•防城港)已知:拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于C點,且A(-1,0),點B在x軸的正半軸上,OC=3OA(O為坐標原點).
(1)求拋物線的解析式;
(2)若點E是拋物線上的一個動點且在x軸下方和拋物線對稱軸的左側,過E作EF∥x軸交拋物線于另一點F,作ED⊥x軸于點D,F(xiàn)G⊥x軸于點G,求四邊形DEFG周長m的最大值;
(3)設拋物線頂點為P,當四邊形DEFG周長m取得最大值時,以EF為邊的平行四邊形面積是△AEP面積的2倍,另兩頂點鐘有一頂點Q在拋物線上,求Q點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣西防城港市中考數(shù)學試卷(解析版) 題型:解答題

(2010•防城港)已知:拋物線y=x2+bx+c與x軸交于A,B兩點,與y軸交于C點,且A(-1,0),點B在x軸的正半軸上,OC=3OA(O為坐標原點).
(1)求拋物線的解析式;
(2)若點E是拋物線上的一個動點且在x軸下方和拋物線對稱軸的左側,過E作EF∥x軸交拋物線于另一點F,作ED⊥x軸于點D,F(xiàn)G⊥x軸于點G,求四邊形DEFG周長m的最大值;
(3)設拋物線頂點為P,當四邊形DEFG周長m取得最大值時,以EF為邊的平行四邊形面積是△AEP面積的2倍,另兩頂點鐘有一頂點Q在拋物線上,求Q點的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源:1999年全國中考數(shù)學試題匯編《圖形的旋轉》(01)(解析版) 題型:選擇題

(2010•防城港)下列圖形中既是軸對稱圖形,又是中心對稱圖形的是( )
A.等邊三角形
B.平行四邊形
C.菱形
D.等腰梯形

查看答案和解析>>

科目:初中數(shù)學 來源:2010年全國中考數(shù)學試題匯編《概率》(02)(解析版) 題型:選擇題

(2010•防城港)擲一個骰子,向上一面的點數(shù)大于2且小于5的概率為p1,拋兩枚硬幣,正面均朝上的概率為p2,則( )
A.p1<p2
B.p1>p2
C.p1=p2
D.不能確定

查看答案和解析>>

同步練習冊答案