(2004•泰州)如圖,△ABC中,BD平分∠ABC,且D為AC的中點(diǎn),DE∥BC,AB于點(diǎn)E,若BC=4,則EB長(zhǎng)為   
【答案】分析:根據(jù)已知可求得ED為三角形的中位線,從而可求得DE的長(zhǎng),再根據(jù)平行線的性質(zhì)及已知可得到BE=DE,即求得了EB的長(zhǎng).
解答:解:∵D為AC的中點(diǎn),DE∥BC
∴DE=BC=2,∠EBD=∠CBD
∵BD平分∠ABC
∴∠EBD=∠EDB
∴BE=DE=2.
點(diǎn)評(píng):考查了等腰三角形的性質(zhì)及中位線的性質(zhì)的綜合運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《圓》(12)(解析版) 題型:解答題

(2004•泰州)如圖,B為線段AD上一點(diǎn),△ABC和△BDE都是等邊三角形,連接CE并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)F,△ABC的外接圓⊙O交CF于點(diǎn)M.
(1)求證:BE是⊙O的切線;
(2)求證:AC2=CM•CF;
(3)若CM=,MF=,求BD;
(4)若過(guò)點(diǎn)D作DG∥BE交EF于點(diǎn)G,過(guò)G作GH∥DE交DF于點(diǎn)H,則易知△DGH是等邊三角形.設(shè)等邊△ABC、△BDE、△DGH的面積分別為S1、S2、S3,試探究S1、S2、S3之間的等量關(guān)系,請(qǐng)直接寫(xiě)出其結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(11)(解析版) 題型:解答題

(2004•泰州)如圖,B為線段AD上一點(diǎn),△ABC和△BDE都是等邊三角形,連接CE并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)F,△ABC的外接圓⊙O交CF于點(diǎn)M.
(1)求證:BE是⊙O的切線;
(2)求證:AC2=CM•CF;
(3)若CM=,MF=,求BD;
(4)若過(guò)點(diǎn)D作DG∥BE交EF于點(diǎn)G,過(guò)G作GH∥DE交DF于點(diǎn)H,則易知△DGH是等邊三角形.設(shè)等邊△ABC、△BDE、△DGH的面積分別為S1、S2、S3,試探究S1、S2、S3之間的等量關(guān)系,請(qǐng)直接寫(xiě)出其結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年全國(guó)中考數(shù)學(xué)試題匯編《三角形》(05)(解析版) 題型:填空題

(2004•泰州)如圖,△ABC中,BD平分∠ABC,且D為AC的中點(diǎn),DE∥BC,AB于點(diǎn)E,若BC=4,則EB長(zhǎng)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2004年江蘇省泰州市中考數(shù)學(xué)試卷(解析版) 題型:解答題

(2004•泰州)如圖,B為線段AD上一點(diǎn),△ABC和△BDE都是等邊三角形,連接CE并延長(zhǎng)交AD的延長(zhǎng)線于點(diǎn)F,△ABC的外接圓⊙O交CF于點(diǎn)M.
(1)求證:BE是⊙O的切線;
(2)求證:AC2=CM•CF;
(3)若CM=,MF=,求BD;
(4)若過(guò)點(diǎn)D作DG∥BE交EF于點(diǎn)G,過(guò)G作GH∥DE交DF于點(diǎn)H,則易知△DGH是等邊三角形.設(shè)等邊△ABC、△BDE、△DGH的面積分別為S1、S2、S3,試探究S1、S2、S3之間的等量關(guān)系,請(qǐng)直接寫(xiě)出其結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案