已知關(guān)于x的方程x2-(3k+1)x+2k2+2k=0
(1)求證:無(wú)論k取何實(shí)數(shù)值,方程總有實(shí)數(shù)根.
(2)若等腰△ABC的一邊長(zhǎng)為a=6,另兩邊長(zhǎng)b,c恰好是這個(gè)方程的兩個(gè)根,求此三角形的周長(zhǎng).
【答案】分析:(1)根據(jù)一元二次方程根的判別式,當(dāng)△≥0時(shí),方程有兩個(gè)實(shí)數(shù)根,所以只需證明△≥0即可.
(2)利用求根公式計(jì)算出方程的兩根x1=3k-1,x2=2,則可設(shè)b=2k-1,c=2,然后討論:當(dāng)a、b為腰;當(dāng)b、c為腰,分別求出邊長(zhǎng),但要滿足三角形三邊的關(guān)系,最后計(jì)算周長(zhǎng)即可.
解答:(1)證明:△=[-(3k+1)]2-4×1×(2k2+2k),
=k2-2k+1,
=(k-1)2,
∵無(wú)論k取什么實(shí)數(shù)值,(k-1)2≥0,
∴△≥0,
所以無(wú)論k取什么實(shí)數(shù)值,方程總有實(shí)數(shù)根;
(2)x2-(3k+1)x+2k2+2k=0,
因式分解得:(x-2k)(x-k-1)=0,
解得:x1=2k,x2=k+1,
∵b,c恰好是這個(gè)方程的兩個(gè)實(shí)數(shù)根,設(shè)b=2k,c=k+1,
當(dāng)a、b為腰,則a=b=6,而a+b>c,a-b<c,所以三角形的周長(zhǎng)為:6+6+4=16;
當(dāng)b、c為腰,則k+1=6,解得k=5,
∵b+c<a,∴所以這種情況不成立.
當(dāng)a、c為腰 k+1=6 則b=5∵b+c<a∴三角形的周長(zhǎng)為:6+6+10=22.
∴三角形的周長(zhǎng)為:6+6+10=22.
綜上,三角形的周長(zhǎng)為16或22.
點(diǎn)評(píng):本題考查了一元二次方程ax2+bx+c=0(a≠0)的根的判別式△=b2-4ac:當(dāng)△>0,方程有兩個(gè)不相等的實(shí)數(shù)根;當(dāng)△=0,方程有兩個(gè)相等的實(shí)數(shù)根;當(dāng)△<0,方程沒有實(shí)數(shù)根.也考查了三角形三邊的關(guān)系以及分類討論思想的運(yùn)用.