已知⊙O是等邊三角形ABC的內(nèi)切圓,⊙O的半徑為1,則等邊三角形ABC的邊長(zhǎng)為   
【答案】分析:連接OB,OD,根據(jù)⊙O是等邊△ABC的內(nèi)切圓,求出∠OBD=30°,求出OB=2OD=2,根據(jù)勾股定理求出BD,同理求出CD,相加即可得出答案.
解答:解:
連接OB,OD,
∵⊙O是等邊△ABC的內(nèi)切圓,
∴∠OBD=30°,∠BDO=90°,
∴OB=2OD=2,
由勾股定理得:BD==
同理CD=,
∴BC=BD+CD=2
故答案為:2
點(diǎn)評(píng):本題考查了等邊三角形性質(zhì),三角形的內(nèi)切圓,勾股定理,含30度角的直角三角形性質(zhì)等知識(shí)點(diǎn)的應(yīng)用,關(guān)鍵是構(gòu)造直角三角形,并求出OB和BD的長(zhǎng),題目較好,難度適中.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

4、如圖,已知△ABC是等邊三角形,AD∥BC,CD⊥AD,垂足為D,E為AC的中點(diǎn),AD=DE=6cm.則∠ACD=
30
°,AC=
12
cm,∠DAC=
60
°,△ADE是
等邊
三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在平面直角坐標(biāo)系中,已知△AOB是等邊三角形,點(diǎn)A的坐標(biāo)是(0,4),點(diǎn)B在第一象限,點(diǎn)P是x軸上的一個(gè)動(dòng)點(diǎn),連接AP,并把△AOP繞著點(diǎn)A按逆時(shí)針?lè)较蛐D(zhuǎn),使邊AO與AB重合,得到△ABD.
(1)求直線AB的解析式;
(2)當(dāng)點(diǎn)P運(yùn)動(dòng)到點(diǎn)(
3
,0)時(shí),求此時(shí)DP的長(zhǎng)及點(diǎn)D的坐標(biāo);
(3)是否存在點(diǎn)P,使△OPD的面積等于
3
4
?若存在,請(qǐng)求出符合條件的點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC是等邊三角形,點(diǎn)O為是AC的中點(diǎn),OB=12,動(dòng)點(diǎn)P在線段AB上從點(diǎn)A向點(diǎn)B以每秒
3
個(gè)單位的速度運(yùn)動(dòng),設(shè)運(yùn)動(dòng)時(shí)間為t秒.以點(diǎn)P為頂點(diǎn),作等邊△PMN,點(diǎn)M,N在直線OB上,取OB的中點(diǎn)D,以O(shè)D為邊在△AOB內(nèi)部作如圖所示的矩形ODEF,點(diǎn)E在線段AB上.
(1)求當(dāng)?shù)冗叀鱌MN的頂點(diǎn)M運(yùn)動(dòng)到與點(diǎn)O重合時(shí)t的值;
(2)求等邊△PMN的邊長(zhǎng)(用t的代數(shù)式表示);
(3)設(shè)等邊△PMN和矩形ODE F重疊部分的面積為S,請(qǐng)求你直接寫(xiě)出當(dāng)0≤t≤2秒時(shí)S與t的函數(shù)關(guān)系式,并寫(xiě)出對(duì)應(yīng)的自變量t的取值范圍;
(4)點(diǎn)P在運(yùn)動(dòng)過(guò)程中,是否存在點(diǎn)M,使得△EFM是等腰三角形?若存在,求出對(duì)應(yīng)的t的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC是等邊三角形,點(diǎn)D、E分別在BC、AC邊上,且AE=CD,AD與BE相交于點(diǎn)F.
(1)線段AD與BE有什么關(guān)系?試證明你的結(jié)論.
(2)求∠BFD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC是等邊三角形,點(diǎn)D是AC邊上一動(dòng)點(diǎn),△BDE是等邊三角形,連接AE.
(1)求證:△EBA≌△DBC;EA∥BC;
(2)當(dāng)點(diǎn)D是AC邊的中點(diǎn),其他條件不變時(shí),指出圖中所有的垂直關(guān)系(不添加新的字母和線段).

查看答案和解析>>

同步練習(xí)冊(cè)答案