如圖,已知AB是⊙O的直徑,BC為弦,過圓心O作OD⊥BC交弧BC于點D,連接DC,若∠DCB=32°,則∠BAC=   
【答案】分析:由圓周角定理可知,∠BOD=2∠BCD=64°,由AB為直徑可知,AC⊥BC,又OD⊥BC,可知AC∥OD,利用平行線的性質(zhì)可求∠BAC.
解答:解:∵∠BOD與∠BCD為所對的圓心角和圓周角,
∴∠BOD=2∠BCD=64°,
∵AB為直徑,∴AC⊥BC,
又∵OD⊥BC,∴AC∥OD,
∴∠BAC=∠BOD=64°,
故答案為:64°.
點評:本題考查了圓周角定理,平行線的判定與性質(zhì).關(guān)鍵是利用圓周角定理求圓心角,利用平行線的判定與性質(zhì)求解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,AC是弦,D為AB延長線上一點,DC=AC,∠ACD=120°,BD=10.
(1)判斷DC是否為⊙O的切線,并說明理由;
(2)求扇形BOC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知AB是⊙O的直徑,C是⊙O上一點,∠BAC的平分線交⊙O于點D,交⊙O的切線BE于點E,過點D作DF⊥AC,交AC的延長線于點F.
(1)求證:DF是⊙O的切線;
(2)若DF=3,DE=2
①求
BEAD
值;
②求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2013•泰安)如圖,已知AB是⊙O的直徑,AD切⊙O于點A,點C是
EB
的中點,則下列結(jié)論不成立的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是⊙O的直徑,P為⊙O外一點,且OP∥BC,∠P=∠BAC.
求證:PA為⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知AB是圓O的直徑,∠DAB的平分線AC交圓O與點C,作CD⊥AD,垂足為點D,直線CD與AB的延長線交于點E.
(1)求證:直線CD為圓O的切線.
(2)當(dāng)AB=2BE,DE=2
3
時,求AD的長.

查看答案和解析>>

同步練習(xí)冊答案