mn
pq
=m+n-p-q
,則
12
34
的值是(  )
分析:根據(jù)題中的新定義化簡(jiǎn)所求式子,計(jì)算即可得到結(jié)果.
解答:解:根據(jù)題中的新定義得:1+2-3-4=3-3-4=-4,
故選B.
點(diǎn)評(píng):此題考查了有理數(shù)的加減混合運(yùn)算,熟練掌握運(yùn)算法則是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,正方形ABCD的對(duì)角線AC與BD相交于點(diǎn)M,正方形MNPQ與正方形ABCD全等,射線MN與MQ不過(guò)A、B、C、D四點(diǎn)且分別交ABCD的邊于E、F兩點(diǎn),
(1)求證:ME=MF;
(2)若將原題中的正方形改為矩形,且BC=2AB=4,其他條件不變,探索線段ME與線段MF的數(shù)量關(guān)系.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,在正方形ABCD中,點(diǎn)E、F分別為邊BC、CD的中點(diǎn),AF、DE相交于點(diǎn)G,則可得結(jié)論:①AF=DE,②AF⊥DE(不須證明).
(1)如圖②,若點(diǎn)E、F不是正方形ABCD的邊BC、CD的中點(diǎn),但滿足CE=DF,則上面的結(jié)論①、②是否仍然成立;(請(qǐng)直接回答“成立”或“不成立”)
(2)如圖③,若點(diǎn)E、F分別在正方形ABCD的邊CB的延長(zhǎng)線和DC的延長(zhǎng)線上,且CE=DF,此時(shí)上面的結(jié)論①、②是否仍然成立?若成立,請(qǐng)寫(xiě)出證明過(guò)程;若不成立,請(qǐng)說(shuō)明理由.
(3)如圖④,在(2)的基礎(chǔ)上,連接AE和EF,若點(diǎn)M、N、P、Q分別為AE、EF、FD、AD的中點(diǎn),請(qǐng)先判斷四邊形MNPQ是“矩形、菱形、正方形、等腰梯形”中的哪一種,并寫(xiě)出證明過(guò)程.
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

22、已知四邊形ABCD和對(duì)角線AC、BD,順次連接各邊中點(diǎn)得四邊形MNPQ,給出以下6個(gè)命題:
①若所得四邊形MNPQ為矩形,則原四邊形ABCD為菱形;
②若所得四邊形MNPQ為菱形,則原四邊形ABCD為矩形;
③若所得四邊形MNPQ為矩形,則AC⊥BD;
④若所得四邊形MNPQ為菱形,則AC=BD;
⑤若所得四邊形MNPQ為矩形,則∠BAD=90°;
⑥若所得四邊形MNPQ為菱形,則AB=AD.以上命題中,正確的是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖1,正方形ABCD和正方形QMNP,M是正方形ABCD的對(duì)稱(chēng)中心,邊MN與邊AB交于F,邊AD與邊QM交于E.
(1)在圖1中,求證:AE+AF=
2
AM

(2)如圖2,若將原題中的“正方形”改為“菱形”,且∠QMN=∠CBA=60°其他條件不變,則在圖2中線段AE,AF與MA的關(guān)系為
AE+AF=AM
AE+AF=AM
,
(3)在(2)的條件下,若菱形MNPQ在繞著點(diǎn)M運(yùn)動(dòng)的過(guò)程中,點(diǎn)E,F(xiàn)分別在邊AD,AB所在直線上時(shí),已知菱形ABCD的邊長(zhǎng)為4,AE=1求△AFM的面積

查看答案和解析>>

同步練習(xí)冊(cè)答案