【題目】在Rt△ABC中,∠C=90°,BC=3,AC=4,點P在以C為圓心,5為半徑的圓上,連結(jié)PA,PB.若PB=4,則PA的長為 .
【答案】3或
【解析】解:連結(jié)CP,PB的延長線交⊙C于P′,如圖,∵CP=5,CB=3,PB=4,
∴CB2+PB2=CP2 ,
∴△CPB為直角三角形,∠CBP=90°,
∴CB⊥PB,
∴PB=P′B=4,
∵∠C=90°,
∴PB∥AC,
而PB=AC=4,
∴四邊形ACBP為矩形,
∴PA=BC=3,
在Rt△APP′中,∵PA=3,PP′=8,
∴P′A= = ,
∴PA的長為3或 .
故答案為3或 .
連結(jié)CP,PB的延長線交⊙C于P′,如圖,先計算出CB2+PB2=CP2 , 則根據(jù)勾股定理的逆定理得∠CBP=90°,再根據(jù)垂徑定理得到PB=P′B=4,接著證明四邊形ACBP為矩形,則PA=BC=3,然后在Rt△APP′中利用勾股定理計算出P′A= ,從而得到滿足條件的PA的長為3或 .
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解同學(xué)們每月零花錢的數(shù)額,校園小記者隨機(jī)調(diào)查了本校部分同學(xué),根據(jù)調(diào)查結(jié)果,繪制出了如下兩個尚不完整的統(tǒng)計圖表. 調(diào)查結(jié)果統(tǒng)計表
組別 | 分組(單位:元) | 人數(shù) |
A | 0≤x<30 | 4 |
B | 30≤x<60 | 16 |
C | 60≤x<90 | a |
D | 90≤x<120 | b |
E | x≥120 | 2 |
請根據(jù)以上圖表,解答下列問題:
(1)填空:這次被調(diào)查的同學(xué)共有人,a+b= , m=;
(2)求扇形統(tǒng)計圖中扇形C的圓心角度數(shù);
(3)該校共有學(xué)生1000人,請估計每月零花錢的數(shù)額x在60≤x<120范圍的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,O為原點,四邊形OABC的頂點A在x軸的正半軸上,OA=4,OC=2,點P,點Q分別是邊BC,邊AB上的點,連結(jié)AC,PQ,點B1是點B關(guān)于PQ的對稱點.
(1)若四邊形OABC為矩形,如圖1,
①求點B的坐標(biāo);
②若BQ:BP=1:2,且點B1落在OA上,求點B1的坐標(biāo);
(2)若四邊形OABC為平行四邊形,如圖2,且OC⊥AC,過點B1作B1F∥x軸,與對角線AC、邊OC分別交于點E、點F.若B1E:B1F=1:3,點B1的橫坐標(biāo)為m,求點B1的縱坐標(biāo),并直接寫出m的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AC、BD為圓O的兩條互相垂直的直徑,動點P從圓心O出發(fā),沿O→C→D→O的路線作勻速運動,設(shè)運動時間為t秒,∠APB的度數(shù)為y度,那么表示y與t之間函數(shù)關(guān)系的圖象大致為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線 與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).
(1)求拋物線的解析式及頂點D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點M是拋物線對稱軸上的一個動點,當(dāng)CM+AM的值最小時,求M的坐標(biāo);
(4)在線段BC下方的拋物線上有一動點P,求△PBC面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,點D、E分別在邊AB、AC上,如果DE∥BC,且∠DCE=∠B,那么下列說法中,錯誤的是( )
A.△ADE∽△ABC
B.△ADE∽△ACD
C.△ADE∽△DCB
D.△DEC∽△CDB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某公司研發(fā)了一款成本為60元的保溫飯盒,投放市場進(jìn)行試銷售,按物價部門規(guī)定,其銷售單價不低于成本,但銷售利潤不高于65%,市場調(diào)研發(fā)現(xiàn),保溫飯盒每天的銷售數(shù)量y(個)與銷售單價x(元)滿足一次函數(shù)關(guān)系;當(dāng)銷售單價為70元時,銷售數(shù)量為160個;當(dāng)銷售單價為80元時,銷售數(shù)量為140個(利潤率= )
(1)求y與x之間的函數(shù)關(guān)系式;
(2)當(dāng)銷售單價定為多少元時,公司每天獲得利潤最大,最大利潤為多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有一座拋物線形拱橋,校下面在正常水位時AB寬20米,水位上升3米就達(dá)到警戒線CD,這時水面寬度為10米.
(1)在如圖的坐標(biāo)系中,求拋物線的表達(dá)式;
(2)若洪水到來是水位以0.2米/時的速度上升,從正常水位開始,再過幾小時能到達(dá)橋面?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com