【題目】已知直線與直線相交于點.并且軸于點軸于點.若平面上有一點,構(gòu)成平行四邊形,請寫出點坐標________

【答案】(1,-2)

【解析】y=0分別代入直線l1、l2中求出x軸,由此即可得出點B、C的坐標,聯(lián)立兩直線解析式成方程組,通過解方程組即可得出交點C的坐標,再根據(jù)平行四邊形的性質(zhì)即可得出線段AD、BC的中點重合,結(jié)合點A、B、C的坐標即可求出點D的坐標.

y=-x+3=0時,x=3,
∴點B的坐標為(3,0);
y=x+1時,x=-1,
∴點C的坐標為(-1,0).
聯(lián)立兩直線解析式成方程組:

,解得

∴點A的坐標為(1,2).
∵四邊形ABDC為平行四邊形,
∴線段AD、BC的中點重合,
∴點D的坐標為(3-1-1,0+0-2),即(1,-2).
故答案是:(1,-2).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】計算:

(1)3﹣5﹣(﹣1)﹣3+12﹣(﹣12

(2)|﹣|×[﹣32÷(﹣2+(﹣2)3]

(3)先化簡,再求值:2x2﹣[3(﹣x2+xy)﹣2y2]﹣2(x2﹣xy+2y2),其中x、y滿足|x﹣|+(y+1)2=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD是矩形,點E在CD邊上,點F在DC延長線上,AE=BF.

(1)求證:四邊形ABFE是平行四邊形;

(2)若∠BEF=∠DAE,AE=3,BE=4,求EF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=90°,AB=BC=2 ,E、F分別是AD、CD的中點,連接BE、BF、EF.若四邊形ABCD的面積為6,則△BEF的面積為(
A.2
B.
C.
D.3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖四邊形ABCD中,AD=DC,∠DAB=∠ACB=90°,過點D作DF⊥AC,垂足為F.DF與AB相交于E.設(shè)AB=15,BC=9,P是射線DF上的動點.當△BCP的周長最小時,DP的長為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】國務(wù)院辦公廳2015年3月16日發(fā)布了《中國足球改革的總體方案》,這是中國足球歷史上的重大改革.為了進一步普及足球知識,傳播足球文化,我市舉行了“足球進校園”知識競賽活動,為了解足球知識的普及情況,隨機抽取了部分獲獎情況進行整理,得到下列不完整的統(tǒng)計圖表:

獲獎等次

頻數(shù)

頻率

一等獎

10

0.05

二等獎

20

0.10

三等獎

30

b

優(yōu)勝獎

a

0.30

鼓勵獎

80

0.40

請根據(jù)所給信息,解答下列問題:

(1)a= , b= , 且補全頻數(shù)分布直方圖;
(2)若用扇形統(tǒng)計圖來描述獲獎分布情況,問獲得優(yōu)勝獎對應(yīng)的扇形圓心角的度數(shù)是多少?
(3)在這次競賽中,甲、乙、丙、丁四位同學都獲得一等獎,若從這四位同學中隨機選取兩位同學代表我市參加上一級競賽,請用樹狀圖或列表的方法,計算恰好選中甲、乙二人的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,正方形ABCD和正方形DEFG的頂點在y軸上,頂點D,F(xiàn)在x軸上,點C在DE邊上,反比例函數(shù)y= (k≠0)的圖象經(jīng)過B,C和邊EF的中點M,若S四邊形ABCD=8,則正方形DEFG的面積是( )

A.
B.
C.16
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A在線段BG上,四邊形ABCD和四邊形DEFG都是正方形,面積分別是1019,則△CDE的面積為_____________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,直線l1過點A(0,4),點D(4,0),直線l2x軸交于點C,兩直線,相交于點B

(1)求直線的解析式和點B的坐標;

(2)求ABC的面積.

查看答案和解析>>

同步練習冊答案