(2006•泰安)如圖,⊙O的割線PAB交⊙O于點A,B,PA=14cm,AB=10cm,PO=20cm,則⊙O的半徑是( )

A.8cm
B.10cm
C.12cm
D.14cm
【答案】分析:根據(jù)切割線定理代入公式即可求解.
解答:解:設(shè)圓O的半徑是x,
則PA•PB=(PO-r)(PO+r),
∴14×(14+10)=(20-x)(20+x),
解得x=8.
故選A.
點評:本題的關(guān)鍵是利用割線定理求線段的長.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:2006年全國中考數(shù)學(xué)試題匯編《二次函數(shù)》(07)(解析版) 題型:解答題

(2006•泰安)如圖,Rt△AOB是一張放在平面直角坐標系中的直角三角形紙片,點O與原點重合,點A在x軸上,點B在y軸上,OB=,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點O與點D重合,折痕為BC.
(1)求直線BC的解析式;
(2)求經(jīng)過B,C,A三點的拋物線y=ax2+bx+c的解析式;若拋物線的頂點為M,試判斷點M是否在直線BC上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省泰安市中考數(shù)學(xué)試卷(課標卷)(解析版) 題型:解答題

(2006•泰安)如圖,Rt△AOB是一張放在平面直角坐標系中的直角三角形紙片,點O與原點重合,點A在x軸上,點B在y軸上,OB=,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點O與點D重合,折痕為BC.
(1)求直線BC的解析式;
(2)求經(jīng)過B,C,A三點的拋物線y=ax2+bx+c的解析式;若拋物線的頂點為M,試判斷點M是否在直線BC上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省泰安市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:解答題

(2006•泰安)如圖,Rt△AOB是一張放在平面直角坐標系中的直角三角形紙片,點O與原點重合,點A在x軸上,點B在y軸上,OB=,∠BAO=30度.將Rt△AOB折疊,使BO邊落在BA邊上,點O與點D重合,折痕為BC.
(1)求直線BC的解析式;
(2)求經(jīng)過B,C,A三點的拋物線y=ax2+bx+c的解析式;若拋物線的頂點為M,試判斷點M是否在直線BC上,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省泰安市中考數(shù)學(xué)試卷(課標卷)(解析版) 題型:解答題

(2006•泰安)如圖,點D,E分別在△ABC的邊BC,BA上,四邊形CDEF是等腰梯形,EF∥CD.EF與AC交于點G,且∠BDE=∠A.
(1)試問:AB•FG=CF•CA成立嗎?說明理由;
(2)若BD=FC,求證:△ABC是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2006年山東省泰安市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•泰安)如圖,在梯形ABCD中,AD∥BC,M,N分別是AD,BC的中點,若∠B與∠C互余,則MN與BC-AD的關(guān)系是( )
A.2MN<BC-AD
B.2MN>BC-AD
C.2MN=BC-AD
D.MN=2(BC-AD)

查看答案和解析>>

同步練習(xí)冊答案