【題目】如圖,在△ABC中,AB=AC,∠BAC=90°,點D.E分別在AB.BC上,∠EAD=EDA,點FDE的延長線與AC的延長線的交點.

1)求證:DE=EF

2)判斷BDCF的數(shù)量關(guān)系,并說明理由.

【答案】(1)詳見解析;(2)BD=CF;詳見解析.

【解析】

1)只要證明EA=ED,EA=EF即可解決問題;
2)結(jié)論:BD=CF.過點DDGACBCG,證明DGEFCE ,則DG=CF,再證出DG=BD即可得出結(jié)論.

1)證明:∵∠BAC=90°,

∴∠DAE+EAF=90°

ADE+F=90°,

∵∠DAE=ADE,

∴∠EAF=F

EA=EF,

∵∠DAE=ADE

EA=ED,

DE=EF

2)解:BD=CF
理由:過點DDGACBCG,

∴∠EDG=F

ED=EF,∠DEG=FEC

DGEFCE,

DG=CF

AB=AC

∴∠ACB=B,

DGAC

∴∠ACB=DGB

∴∠B=DGB,

BD=DG

BD=CF

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題滿分8分2014年12月28日青煙威榮城際鐵路正式開通,從煙臺到北京的高鐵里程比普快里程縮短了81千米,運(yùn)行時間減少了9小時,已知煙臺到北京的普快列車?yán)锍淘?026千米,高鐵平均時速是普快平均時速的25倍

1求高鐵列車的平均時速;

2某日王老師要去距離煙臺大約630千米的某市參加14:00召開的會議,如果他買到

當(dāng)日8:40從煙臺到該是的高鐵票,而且從該市火車站到會議地點最多需要15小時試問在高鐵列車準(zhǔn)點到達(dá)的情況下他能在開會之前趕到嗎?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場將進(jìn)價為2000元的冰箱以2400元售出,平均每天能售出8臺,為了配合國家“家電下鄉(xiāng)”政策的實施,商場決定采取適當(dāng)?shù)慕祪r措施.調(diào)查表明:這種冰箱的售價每降低50元,平均每天就能多售出4臺.

(1)假設(shè)每臺冰箱降價x元,商場每天銷售這種冰箱的利潤是y元,請寫出yx之間的函數(shù)表達(dá)式;(不要求寫自變量的取值范圍)

(2)商場要想在這種冰箱銷售中每天盈利4800元,同時又要使百姓得到實惠,每臺冰箱應(yīng)降價多少元?

(3)每臺冰箱降價多少元時,商場每天銷售這種冰箱的利潤最高?最高利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的個數(shù)有(

①垂線段最短;

②一對內(nèi)錯角的角平分線互相平行;

③平面內(nèi)的n條直線最多有個交點;

④若,則

⑤平行于同一直線的兩條直線互相平行,垂直于同一直線的兩條直線也互相平行.

A.1B.2C.3D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】作圖題:(不寫作法,但必須保留作圖痕跡)

(1)如圖,已知點M.N和∠AOB,求作一點P,使P到點M.N的距離相等,且到∠AOB的兩邊的距離相等.

(2)要在河邊修建一個水泵站,分別向張村.李莊送水(如圖). 修在河邊l什么地方,可使所用水管最短?試在圖中確定水泵站的位置.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:平面直角坐標(biāo)系中,把點A(m,4)m是實數(shù))向右移動7個單位向下移動2個單位得到點B,點B向左移動3個單位向上移動6個單位得到點C,請解答:

1 B,C的坐標(biāo)是:B ,C ;

2 ABC的面積;

3)若連接OC交線段AB于點D,且ACDBCD的面積比不超過0.75時,求m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3).

(1)求點C到x軸的距離;

(2)分別求ABC的三邊長;

(3)點P在y軸上,當(dāng)ABP的面積為6時,請直接寫出點P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y1=x2與直線y2=-x+3相交于A,B兩點.

(1)求這兩個交點的坐標(biāo);

(2)O的坐標(biāo)是原點,求△AOB的面積;

(3)直接寫出當(dāng)y1<y2時,x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABF中,BEAF垂足為E,ADBC,且AF平分∠DAB,求證:(1FC=AD;(2AB=BC+AD

查看答案和解析>>

同步練習(xí)冊答案