精英家教網 > 初中數學 > 題目詳情

【題目】△ABC中,AB=AC=5,BC=8,點P是BC邊上的動點,過點P作PD⊥AB于點D,PE⊥AC于點E,則PD+PE的長是(
A.4.8
B.4.8或3.8
C.3.8
D.5

【答案】A
【解析】解:過A點作AF⊥BC于F,連結AP,
∵△ABC中,AB=AC=5,BC=8,
∴BF=4,
∴△ABF中,AF= =3,
×8×3= ×5×PD+ ×5×PE,
12= ×5×(PD+PE)
PD+PE=4.8.
故選:A.
【考點精析】根據題目的已知條件,利用等腰三角形的性質和勾股定理的概念的相關知識可以得到問題的答案,需要掌握等腰三角形的兩個底角相等(簡稱:等邊對等角);直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】矩形、菱形、正方形、平行四邊形中,既是軸對稱圖形,又是中心對稱圖形的有 ________(填序號).

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知x9的平方根是±3,xy的立方根是3.

(1)xy的值;

(2)xy的平方根是多少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,正方形ABCD中,點E、F分別是BC、CD邊上的點,且∠EAF=45°,對角線BD交AE于點M,交AF于點N.若AB=4,BM=2,則MN的長為_______

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知∠1+∠2=180°,∠3=∠B,試說明∠AED=∠ACB.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】我們知道,任意一個正整數n都可以進行這樣的分解:n=p×qp,q是正整數,且pq,在n的所有這種分解中,如果p,q兩因數之差的絕對值最小,我們就稱p×q是n的最佳分解,并規(guī)定:Fn=,例如12可以分解成1×12,2×6或3×4,因為12-16-24-3,所有3×4是最佳分解,所以F12=.

1如果一個正整數a是另外一個正整數b的平方,我們稱正整數a是完全平方數,求證:對任意一個完全平方數m,總有Fm=1.

2如果一個兩位正整數t,t=10x+y1xy9,x,y為自然數,交換其個位上的數與十位上的數得到的新數減去原來的兩位正整數所得的差為18,那么我們稱這個數t為吉祥數,求所有吉祥數中Ft的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,∠BOC=9°,點A在OB上,且OA=1,按下列要求畫圖: 以A為圓心,1為半徑向右畫弧交OC于點A1 , 得第1條線段AA1;
再以A1為圓心,1為半徑向右畫弧交OB于點A2 , 得第2條線段A1A2
再以A2為圓心,1為半徑向右畫弧交OC于點A3 , 得第3條線段A2A3;…
這樣畫下去,直到得第n條線段,之后就不能再畫出符合要求的線段了,則n=

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】完成下面的證明過程:
已知:如圖,∠D=123°,∠EFD=57°,∠1=∠2
求證:∠3=∠B
證明:∵∠D=123°,∠EFD=57°(已知)
∴∠D+∠EFD=180°
∴AD∥
又∵∠1=∠2(已知)
∥BC(內錯角相等,兩直線平行)
∴EF∥
∴∠3=∠B(兩直線平行,同位角相等)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】方程2x=10的解有________個,不等式2x<10的解有________個.

查看答案和解析>>

同步練習冊答案