精英家教網 > 初中數學 > 題目詳情
等腰三角形的兩個內角數比為2:1,則這個三角形的頂角為(  )
分析:根據等腰三角形的兩內角之比為2:1,得到三內角之比為2:2:1或1:1:2,分別設每一份為x與y,利用三角形內角和定理列出方程,求出方程的解得到x與y的值,即可確定出等腰三角形的頂角.
解答:解:由題意得到此等腰三角形的三內角之比為2:2:1或2:1:1,
若內角之比為2:2:1,設每一份為x,則有2x+2x+x=180°,
解得:x=36°,此時等腰三角形的頂角為36°;
若內角之比為1:1:2,設每一份為y,則有y+y+2y=180°,
解得:y=45°,此時等腰三角形的頂角為90°,
綜上,這個三角形的頂角為36°或90°.
故選C
點評:此題考查了等腰三角形的性質,以及三角形的內角和定理,利用了方程的思想,熟練掌握等腰三角形的性質是解本題的關鍵.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

16、等腰三角形的兩個內角的度數之比是1:2,那么這個等腰三角形的頂角度數為
36或90
度.

查看答案和解析>>

科目:初中數學 來源: 題型:

已知等腰三角形的兩個內角的度數之比為1:2,則這個等腰三角形的頂角為
 

查看答案和解析>>

科目:初中數學 來源: 題型:

已知一個等腰三角形的兩個內角的比值是2:5,則這個等腰三角形的頂角的度數是( 。
A、30°B、75°C、30°或者75°D、30°或者100°

查看答案和解析>>

科目:初中數學 來源: 題型:

等腰三角形的兩個內角之比是2:5,則這個三角形的最大內角的度數是
75°
75°
100°
100°

查看答案和解析>>

同步練習冊答案