如圖,在平面直角坐標(biāo)系中有一矩形ABCO(O為原點(diǎn)),點(diǎn)A、C分別在x軸、y軸上,且C點(diǎn)坐標(biāo)為(0,6),將△BCD沿BD折疊(D點(diǎn)在OC上),使C點(diǎn)落在OA邊的E點(diǎn)上,并將△BAE沿BE折疊,恰好使點(diǎn)A落在BD邊的F點(diǎn)上.
(1)求BC的長(zhǎng),并求折痕BD所在直線的函數(shù)解析式;
(2)過(guò)點(diǎn)F作FG⊥x軸,垂足為G,F(xiàn)G的中點(diǎn)為H,若拋物線y=ax2+bx+c經(jīng)過(guò)B、H、D三點(diǎn),求拋物線解析式;
(3)點(diǎn)P是矩形內(nèi)部的點(diǎn),且點(diǎn)P在(2)中的拋物線上運(yùn)動(dòng)(不含B、D點(diǎn)),過(guò)點(diǎn)P作PN⊥BC,分別交BC和BD于點(diǎn)N、M,是否存在這樣的點(diǎn)P,使S△BNM=S△BPM?如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.
(1)由翻折可知:△BCD≌△BED,∴∠CBD=∠DBE.
又∵△ABE≌△FBE,∴∠DBE=∠ABE.
又∵四邊形OCBA為矩形,
∴∠CBD=∠DBE=∠ABE=30°.
在Rt△DOE中,∠ODE=60°,∴DE=CD=2OD.
∵OC=OD+CD=6,∴OD+2OD=6,
∴OD=2,D(0,2),
∴CD=4.
在Rt△CDB中,BC=CD•tan60°=4
3
,∴B(4
3
,6).
設(shè)直線BD的解析式為y=kx+b,
由題意得:
b=2
4
3
k+b=6
,解得
k=
3
3
b=2
,
∴直線BD的解析式為:y=
3
3
x+2.

(2)在Rt△FGE中,∠FEG=60°,F(xiàn)E=AE.
由(1)易得:OE=2
3
,
∴FE=AE=2
3

∴FG=3,GE=
3
.∴OG=
3

∵H是FG的中點(diǎn),
∴H(
3
,
3
2
).
∵拋物線y=ax2+bx+c經(jīng)過(guò)B、H、D三點(diǎn),
48a+4
3
b+c=6
c=2
3a+
3
b+c=
3
2
,解得
a=
1
6
b=-
3
3
c=2
,
∴y=
1
6
x2-
3
3
x+2.

(3)存在.
∵P在拋物線上,
∴設(shè)P(x,
1
6
x2-
3
3
x+2),M(x,
3
3
x+2),N(x,6).
∵S△BNM=S△BPM,
∴PM=MN.
即:-
1
6
x2+
2
3
3
x=4-
3
3
x,
整理得:x2-2
3
x-4=0,
解得:x=2
3
或x=4
3

當(dāng)x=2
3
時(shí),y=
1
6
x2-
3
3
x+2=2;
當(dāng)x=4
3
時(shí),y=
1
6
x2-
3
3
x+2=6,與點(diǎn)B重合,不符合題意,舍去.
∴P(2
3
,2).
∴存在點(diǎn)P,使S△BNM=S△BPM,點(diǎn)P的坐標(biāo)為(2
3
,2).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,拋物線y=ax2-3ax+b經(jīng)過(guò)A(-1,0),C(3,2)兩點(diǎn),與y軸交于點(diǎn)D,與x軸交于另一點(diǎn)B.
(1)求此拋物線的解析式;
(2)若直線y=kx-1(k≠0)將四邊形ABCD面積二等分,求k的值;
(3)如圖2,過(guò)點(diǎn)E(1,-1)作EF⊥x軸于點(diǎn)F,將△AEF繞平面內(nèi)某點(diǎn)旋轉(zhuǎn)180°后得△MNQ(點(diǎn)M,N,Q分別與點(diǎn)A,E,F(xiàn)對(duì)應(yīng)),使點(diǎn)M,N在拋物線上,求點(diǎn)M,N的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在直角坐標(biāo)系中,已知點(diǎn)A(
3
,0),B(-
3
,0),以點(diǎn)A為圓心,AB為半徑的圓與x軸相交于點(diǎn)B,C,與y軸相交于點(diǎn)D,E.
(1)若拋物線y=
1
3
x2+bx+c經(jīng)過(guò)C,D兩點(diǎn),求拋物線的解析式,并判斷點(diǎn)B是否在該拋物線上;
(2)在(1)中的拋物線的對(duì)稱(chēng)軸上求一點(diǎn)P,使得△PBD的周長(zhǎng)最;
(3)設(shè)Q為(1)中的拋物線的對(duì)稱(chēng)軸上的一點(diǎn),在拋物線上是否存在這樣的點(diǎn)M,使得四邊形BCQM是平行四邊形?若存在,求出點(diǎn)M的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

拋物線經(jīng)過(guò)A、B、C三點(diǎn),頂點(diǎn)為D,且與x軸的另一個(gè)交點(diǎn)為E.
(1)求該拋物線的解析式;
(2)求D和E的坐標(biāo),并求四邊形ABDE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖1,在平面直角坐標(biāo)系中,AB、CD都垂直于x軸,垂足分別為B、D,AD與BC相交于E點(diǎn),已知:A(-2,-6),C(1,-3),一拋物線經(jīng)過(guò)A,E,C三點(diǎn).
(1)求點(diǎn)E的坐標(biāo)及此拋物線的表達(dá)式;
(2)如圖2,如果AB位置不變,將DC向右平移k(k>0)個(gè)單位,求△AEC的面積S關(guān)于k的函數(shù)表達(dá)式;
(3)在第(2)問(wèn)中,是否存在k的值,使AD⊥BC?如果存在,求出k的值;如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,已知二次函數(shù)y=-
1
2
x2+bx+c
的圖象經(jīng)過(guò)A(2,0)、B(0,-6)兩點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)求該二次函數(shù)圖象的頂點(diǎn)坐標(biāo)、對(duì)稱(chēng)軸以及二次函數(shù)圖象與x軸的另一個(gè)交點(diǎn);
(3)在右圖的直角坐標(biāo)系內(nèi)描點(diǎn)畫(huà)出該二次函數(shù)的圖象及對(duì)稱(chēng)軸.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,矩形ABCD中,AB=6cm,AD=3cm,點(diǎn)E在邊DC上,且DE=4cm.動(dòng)點(diǎn)P從點(diǎn)A開(kāi)始沿著A?B?C?E的路線以2cm/s的速度移動(dòng),動(dòng)點(diǎn)Q從點(diǎn)A開(kāi)始沿著AE以1cm/s的速度移動(dòng),當(dāng)點(diǎn)Q移動(dòng)到點(diǎn)E時(shí),點(diǎn)P停止移動(dòng).若點(diǎn)P、Q同時(shí)從點(diǎn)A同時(shí)出發(fā),設(shè)點(diǎn)Q移動(dòng)時(shí)間為t(s),P、Q兩點(diǎn)運(yùn)動(dòng)路線與線段PQ圍成的圖形面積為S(cm2),求S與t的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,某中學(xué)生推鉛球,鉛球在點(diǎn)A處出手,在點(diǎn)B處落地,它的運(yùn)行路線滿(mǎn)足y=-
1
12
x2+
2
3
x+
5
3
,則這個(gè)學(xué)生推鉛球的成績(jī)是______米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,拋物線y=x2+2x-3與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn).
(1)求拋物線的頂點(diǎn)坐標(biāo);
(2)設(shè)直線y=x+3與y軸的交點(diǎn)是D,在線段AD上任意取一點(diǎn)E(不與A、D重合),經(jīng)過(guò)A、B、E三點(diǎn)的圓交直線AC于點(diǎn)F,試判斷△BEF的形狀.

查看答案和解析>>

同步練習(xí)冊(cè)答案