如圖,△ABC中,點O是邊AC上一個動點,過O作直線MN∥BC.設MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F.
(1)求證:OE=OF;
(2)若CE=12,CF=5,求OC的長;
(3)當點O在邊AC上運動到什么位置時,四邊形AECF是矩形?并說明理由.
解:(1)證明:如圖,∵MN交∠ACB的平分線于點E,交∠ACB的外角平分線于點F,
∴∠2=∠5,4=∠6。
∵MN∥BC,∴∠1=∠5,3=∠6。
∴∠1=∠2,∠3=∠4!郋O=CO,FO=CO。
∴OE=OF。
(2)∵∠2=∠5,∠4=∠6,∴∠2+∠4=∠5+∠6=90°。
∵CE=12,CF=5,∴。
∴OC=EF=6.5。
(3)當點O在邊AC上運動到AC中點時,四邊形AECF是矩形。理由如下:
當O為AC的中點時,AO=CO,
∵EO=FO,∴四邊形AECF是平行四邊形。
∵∠ECF=90°,∴平行四邊形AECF是矩形。
【解析】(1)根據平行線的性質以及角平分線的性質得出∠1=∠2,∠3=∠4,進而得出答案。
(2)根據已知得出∠2+∠4=∠5+∠6=90°,進而利用勾股定理求出EF的長,即可根據直角三角形斜邊上的中線性質得出CO的長。
(3)根據平行四邊形的判定以及矩形的判定得出即可。
科目:初中數學 來源: 題型:
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com