【題目】某工藝品廠設(shè)計了一款成本為10元/件的小工藝品投放市場進行試銷,經(jīng)過調(diào)查,得到如下數(shù)據(jù):
銷售單價x(元/件) | … | 20 | 30 | 40 | 50 | 60 | … |
每天銷售量y(件) | … | 500 | 400 | 300 | 200 | 100 | … |
(1)把上表中x,y的各組對應(yīng)值作為點的坐標(biāo),在下面的平面直角坐標(biāo)系中描出相應(yīng)的點,猜想y與x的函數(shù)關(guān)系,并求出函數(shù)關(guān)系式.
(2)當(dāng)銷售單價為多少元時,工藝品廠試銷該小工藝品每天獲得的利潤最大?最大利潤是多少?(利潤=銷售額﹣成本)
【答案】
(1)解:畫出圖形,如圖所示.
由圖可猜想y與x是一次函數(shù)關(guān)系,設(shè)這個一次函數(shù)為y=kx+b(k≠0),
∵這個一次函數(shù)的圖象經(jīng)過(20,500),(30,400)兩點,
∴ ,解得: ,
∴函數(shù)關(guān)系式是y=﹣10x+700.
經(jīng)驗證,其他各點也在y=﹣10x+700上
(2)解:設(shè)工藝品試銷每天獲得利潤為W元,
由已知得:W=(x﹣10)(﹣10x+700)=﹣10x2+800x﹣7000=﹣10(x﹣40)2+9000,
∵﹣10<0,
∴當(dāng)x=40時,W取最大值,最大值為9000.
故:當(dāng)銷售單價為40元時,工藝品廠試銷該小工藝品每天獲得的利潤最大,最大利潤是9000元
【解析】(1)將表中各點描在坐標(biāo)系中,根據(jù)點的分別可猜想y與x是一次函數(shù)關(guān)系,設(shè)這個一次函數(shù)為y=kx+b(k≠0),根據(jù)點的坐標(biāo)利用待定系數(shù)法即可求出該函數(shù)關(guān)系式式,再驗證其余各點是否在該函數(shù)關(guān)系式的圖象上,由此即可得出結(jié)論;(2)設(shè)工藝品試銷每天獲得利潤為W元,根據(jù)“利用=單件利潤×銷售數(shù)量”即可得出W關(guān)于x的函數(shù)關(guān)系式,利用配方法結(jié)合二次函數(shù)的性質(zhì)即可解決最值問題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,兩個同心圓,大圓的弦AB與小圓相切于點P,大圓的弦CD經(jīng)過點P,且CD=13,PD=4,則兩圓組成的圓環(huán)的面積是( )
A.16π
B.36π
C.52π
D.81π
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,以BC為半徑作⊙B,交AB于點D,交AB的延長線于點E,連接CD、CE.
(1)求證:△ACD∽△AEC;
(2)當(dāng) = 時,求tanE;
(3)若AD=4,AC=4 ,求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場經(jīng)營一批進價是30元/件的商品,在市場試銷中的日銷售量y件與銷售價x元之間滿足一次函數(shù)關(guān)系.
(1)請借助以下記錄確定y與x的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
x | 35 | 40 | 45 | 50 |
y | 57 | 42 | 27 | 12 |
(2)若日銷售利潤為P元,根據(jù)上述關(guān)系寫出P關(guān)于x的函數(shù)關(guān)系式,并指出當(dāng)銷售單價x為多少元時,才能獲得最大的銷售利潤?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC、△DCE、△FEG為等邊三角形,邊長分別為2、3、5,且從左至右如圖排列,連接BF,交DC、DE分別于M、N兩點,則△DMN的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,E為邊CD上一點,將△ADE沿AE折疊至△AD′E處,AD′與CE交于點F.若∠B=52°,∠DAE=20°,則∠FED′的大小為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等腰直角三角形,∠A=90°,BC=4,點P是△ABC邊上一動點,沿B→A→C的路徑移動,過點P作PD⊥BC于點D,設(shè)BD=x,△BDP的面積為y,則下列能大致反映y與x函數(shù)關(guān)系的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)y= (x<0)的圖象交于A(﹣1,3),B(﹣3,n)兩點,直線y=﹣1與y軸交于點C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,DE是AC的垂直平分線,點D在BC上,△ABC的周長為20cm,△ABD的周長為12cm,則AE的長為cm.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com