△ABC在如圖所示的平面直角坐標系中.
(1)畫出△ABC關(guān)于y軸對稱的△A1B1C1;
(2)畫出將△ABC繞點O順時針旋轉(zhuǎn)90°得到的△A2B2C2
(3)求∠CC2C1的度數(shù).

【答案】分析:根據(jù)定義,通過作圖解決問題,作出△CC2C1,根據(jù)三角形的邊長即可確定三角形的形狀,即可作出判斷.
解答:解:(1)、(2)如圖,正確畫出答案(4分).

(3)由圖可知,∵△CC2C1為等腰直角三角形,
∴∠CC2C1=45°(2分).

點評:根據(jù)軸對稱,中心對稱的定義,畫出符合條件的圖形.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

21、格點△ABC在如圖所示的平面直角坐標系中,點B的坐標為(1,1).
(1)畫出△ABC向左平移3的單位長度的圖形△A1B1C1,再以原點O為位似中心,將△A1B1C1放大到兩倍(即新圖與原圖的相似比為2),在所給的方格圖中畫出所得的圖形△A2B2C2
(2)點A1的坐標為
(-1,3)
,在△A1B1C1內(nèi)有一點M(a,b),則點M在△A2B2C2中的對應點N的坐標為
(2a,2b)或(-2a,-2b)
.(橫縱坐標可用含a、b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)△ABC在如圖所示的平面直角坐標系中,將△ABC向右平移1個單位長度,再向下平移3個單位長度,得到△A1B1C1,再畫出△A1B1C1關(guān)于y軸對稱的圖形△A2B2C2,則四邊形A1A2B2B1的面積為
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

22、△ABC在如圖所示的平面直角坐標系中.
(1)畫出△ABC繞B點逆時針旋轉(zhuǎn)90°得到的△A1BC1
(2)畫出△ABC關(guān)于原點成對稱的△A2B1C2
(3)寫出A2、B1、C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知△ABC在如圖所示的平面直角坐標系中,C(5,2).
(1)將△ABC向左平移5個單位后得到對應的△A1B1C1,請畫出△A1B1C1,并寫出C1的坐標;
(2)以原點O為對稱中心,畫出與△A1B1C1關(guān)于原點O對稱的△A2B2C2,并寫出點C1的對應點C2的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•高淳縣一模)△ABC在如圖所示的平面直角坐標系中,將△ABC向右平移3個單位長度后得△A1B1C1,再將△A1B1C1繞點O旋轉(zhuǎn)180°后得到△A2B2C2,則∠AC2O=
45
45
°.

查看答案和解析>>

同步練習冊答案