【題目】如圖,矩形紙片ABCD中,AB=4,BC=6.將該矩形紙片剪去3個等腰直角三角形,所有剪法中剩余部分面積的最小值是(  )

A.6
B.3
C.2.5
D.2

【答案】C
【解析】解:如圖以BC為邊作等腰直角三角形△EBC,延長BE交AD于F,得△ABF是等腰直角三角形,
作EG⊥CD于G,得△EGC是等腰直角三角形,

在矩形ABCD中剪去△ABF,△BCE,△ECG得到四邊形EFDG,此時剩余部分面積的最小=4×6﹣ ×4×4﹣ ×3×6﹣ ×3×3=2.5.
故選C.
以BC為邊作等腰直角三角形△EBC,延長BE交AD于F,得△ABF是等腰直角三角形,作EG⊥CD于G,得△EGC是等腰直角三角形,在矩形ABCD中剪去△ABF,△BCE,△ECG得到四邊形EFDG,此時剩余部分面積的最小本題考查幾何最值問題、等腰直角三角形性質等知識,解題的關鍵是探究出如何確定三個等腰直角三角形,屬于中考選擇題中的壓軸題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線y= x2+ x﹣ (k>0)與x軸交于點A、B,點A在點B的右邊,與y軸交于點C
(1)如圖1,若∠ACB=90°

①求k的值
②點P為x軸上方拋物線上一點,且點P到直線BC的距離為 ,則點P的坐標為(請直接寫出結果)
(2)如圖2,當k=2時,過原點O的任一直線y=mx(m≠0)交拋物線于點E、F(點E在點F的左邊)

①若OF=2OE,求直線y=mx的解析式;
②求 + 的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為積極響應市委政府“加快建設天藍水碧地綠的美麗長沙”的號召,我市某街道決定從備選的五種樹中選購一種進行栽種.為了更好地了解社情民意,工作人員在街道轄區(qū)范圍內(nèi)隨機抽取了部分居民,進行“我最喜歡的一種樹”的調(diào)查活動(每人限選其中一種樹),并將調(diào)查結果整理后,繪制成如圖兩個不完整的統(tǒng)計圖:
請根據(jù)所給信息解答以下問題:
(1)這次參與調(diào)查的居民人數(shù)為:;
(2)請將條形統(tǒng)計圖補充完整;
(3)請計算扇形統(tǒng)計圖中“楓樹”所在扇形的圓心角度數(shù);
(4)已知該街道轄區(qū)內(nèi)現(xiàn)有居民8萬人,請你估計這8萬人中最喜歡玉蘭樹的有多少人?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了提高身體素質,有些人選擇到專業(yè)的健身中心鍛煉身體,某健身中心的消費方式如下:
普通消費:35元/次;
白金卡消費:購卡280元/張,憑卡免費消費10次再送2次;
鉆石卡消費:購卡560元/張,憑卡每次消費不再收費.
以上消費卡使用年限均為一年,每位顧客只能購買一張卡,且只限本人使用.
(1)李叔叔每年去該健身中心健身6次,他應選擇哪種消費方式更合算?
(2)設一年內(nèi)去該健身中心健身x次(x為正整數(shù)),所需總費用為y元,請分別寫出選擇普通消費和白金卡消費的y與x的函數(shù)關系式;
(3)王阿姨每年去該健身中心健身至少18次,請通過計算幫助王阿姨選擇最合算的消費方式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩家草莓采摘園的草莓品質相同,銷售價格也相同.“五一期間”,兩家均推出了優(yōu)惠方案,甲采摘園的優(yōu)惠方案是:游客進園需購買50元的門票,采摘的草莓六折優(yōu)惠;乙采摘園的優(yōu)惠方案是:游客進園不需購買門票,采摘園的草莓超過一定數(shù)量后,超過部分打折優(yōu)惠.優(yōu)惠期間,設某游客的草莓采摘量為x(千克),在甲采摘園所需總費用為y1(元),在乙采摘園所需總費用為y2(元),圖中折線OAB表示y2與x之間的函數(shù)關系.

(1)甲、乙兩采摘園優(yōu)惠前的草莓銷售價格是每千克元;
(2)求y1、y2與x的函數(shù)表達式;
(3)在圖中畫出y1與x的函數(shù)圖象,并寫出選擇甲采摘園所需總費用較少時,草莓采摘量x的范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,BC=6,AC=8,分別以點A,B為圓心,大于線段AB長度一半的長為半徑作弧,相交于點E,F(xiàn),過點E,F(xiàn)作直線EF,交AB于點D,連結CD,則CD的長是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】Pn表示n邊形的對角線的交點個數(shù)(指落在其內(nèi)部的交點),如果這些交點都不重合,那么Pn與n的關系式是:Pn= (n2﹣an+b)(其中a,b是常數(shù),n≥4)
(1)通過畫圖,可得:四邊形時,P4= ;五邊形時,P5=
(2)請根據(jù)四邊形和五邊形對角線交點的個數(shù),結合關系式,求a,b的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知直線y=﹣2x+4與平面直角坐標系中的x軸、y軸分別交于A、B兩點,以AB為邊作等腰直角三角形ABC,使得點C與原點OAB兩側,則點C的坐標為_____

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,長方形的兩邊長分別為m+3,m+13;如圖2的長方形的兩邊長分別為m+5,m+7.(其中m為正整數(shù))

(1)寫出兩個長方形的面積S1,S2,并比較S1,S2的大;

(2)現(xiàn)有一個正方形的周長與圖1中的長方形的周長相等.試探究該正方形的面積與長方形的面積的差是否是一個常數(shù),如果是,求出這個常數(shù);如果不是,說明理由.

(3)在(1)的條件下,若某個圖形的面積介于S1,S2之間(不包括S1,S2且面積為整數(shù),這樣的整數(shù)值有且只有19個,求m的值.

查看答案和解析>>

同步練習冊答案